Impact of COVID-19 on Global Air Connectivity, and A Research Agenda Anming Zhang / Sauder School of Business, UBC

June 29, 2023 *a* JTTRI Symposium, Tokyo

Economic importance of *aviation*

Directly employed 10 million people and generated US\$3.0 trillion in value-added output globally (ATAG, 2018).

Airline industry is vulnerable to various shocks – next page

Shocks of various kinds

- Locally Convective weathers; Mechanical failures
- Economic and financial disruption Vars; "9-11"
- Epidemic and pandemioutbreaks
- COVID19 can be considered unique event

Evolution of global airline passengers (left) and revenue (right), 20192022

I. JanMay 2020: Shock from epidemic outbreak to pandemic
II. June 2020End of 2021 Bumpy recovery
III. Jan 2022: Back to (new) normal? (Summer 2022)
- Higher price in recovery process

Global Airport Connectivity Index (GACI)

Cheung, T.K., Wong, C.W., & Zhang, A. (2020). The evolution of aviation network: Global airport connectivity index 2006–2016. Transportation Research Part E: Logistics and Transportation Review. **Global Airport Connectivity Index (GACI)**

Classify airports at <u>global</u> level

Tracking (evolution for a given airport).

Benchmarking, on <u>connectivity</u>.

Identify the relevant forces driving rankings: this part is still at an early stage (to be discussed later).

Combine **five** centrality indicators (incl. volume-adjusted).

Five network centrality indicators

Degree

Closeness (measuring "accessibility" of airport)
Volumetric-based flow betweenness ("hubbing")
Eigenvector ("onward connections")
Regional importance ("importance in a subnetwork")

Top-20 Hubs:GAC2006-2019 (pre-pandemic)

Ranking	2006	GACI	2011	GACI	2016	GACI	2019	GACI
1	FRA	3.275	FRA	3.286	PEK	3.392	PEK	3.626
2	LAX	3.239	LAX	3.168	CDG	3.225	FRA	3.314
3	ATL	3.023	ATL	3.167	FRA	3.131	LAX	3.308
4	ORD	2.950	CDG	3.083	LAX	3.116	CDG	3.258
5	CDG	2.942	AMS	3.031	DXB	3.008	ORD	3.145
6	JFK	2.905	PEK	2.996	AMS	2.982	PVG	3.141
7	AMS	2.779	SIN	2.862	PVG	2.912	DXB	3.065
8	YYZ	2.766	ORD	2.860	IST	2.908	AMS	3.051
9	LHR	2.751	DEN	2.714	ORD	2.906	SIN	3.024
10	EWR	2.649	JFK	2.679	ATL	2.865	IST	3.009
11	DFW	2.552	YYZ	2.652	JFK	2.763	ATL	2.952
12	BKK	2.522	DFW	2.648	SIN	2.748	LHR	2.920
13	IAH	2.503	LHR	2.640	HKG	2.730	CAN	2.919
14	DEN	2.485	SFO	2.609	LHR	2.721	YYZ	2.872
15	SIN	2.470	BKK	2.599	YYZ	2.674	HKG	2.871
16	BOS	2.399	DXB	2.581	SFO	2.656	DFW	2.820
17	IAD	2.399	EWR	2.569	ICN	2.606	JFK	2.792
18	HKG	2.391	HKG	2.466	CAN	2.603	ICN	2.693
19	PEK	2.386	IAD	2.452	EWR	2.547	DEN	2.643
20	SFO	2.321	SEA	2.447	DFW	2.522	BKK	2.631

COVID-19 Impact: GACI 2020-2022

Ranking	2006	GACI	2011	GACI	2016	GACI	2019	GACI	2020	GACI	2021	GACI	2022	GACI
1	FRA	3.28	FRA	3.29	PEK	3.39	PEK	3.63	PEK	2.88	FRA	2.80	FRA	3.20
2	LAX	3.24	LAX	3.17	CDG	3.23	FRA	3.31	PVG	2.85	IST	2.79	ORD	3.09
3	ATL	3.02	ATL	3.17	FRA	3.13	LAX	3.31	FRA	2.82	AMS	2.72	DXB	3.06
4	ORD	2.95	CDG	3.08	LAX	3.12	CDG	3.26	CAN	2.77	DXB	2.7	IST	3.01
5	CDG	2.94	AMS	3.03	DXB	3.01	ORD	3.15	CDG	2.77	CAN	2.67	DFW	2.98
6	JFK	2.91	PEK	3	AMS	2.98	PVG	3.14	AMS	2.71	CDG	2.62	CDG	2.98
7	AMS	2.78	SIN	2.86	PVG	2.91	DXB	3.07	IST	2.69	ORD	2.62	LAX	2.92
8	YYZ	2.77	ORD	2.86	IST	2.91	AMS	3.05	CTU	2.63	DFW	2.54	AMS	2.92
9	LHR	2.75	DEN	2.71	ORD	2.91	SIN	3.02	DXB	2.59	LAX	2.46	LHR	2.9
10	EWR	2.65	JFK	2.68	ATL	2.87	IST	3.01	ORD	2.58	LHR	2.46	ATL	2.78
11	DFW	2.55	YYZ	2.65	JFK	2.76	ATL	2.95	LHR	2.56	PEK	2.42	MIA	2.71
12	ВКК	2.52	DFW	2.65	SIN	2.75	LHR	2.92	SZX	2.48	PVG	2.4	JFK	2.69
13	IAH	2.5	LHR	2.64	HKG	2.73	CAN	2.92	YYZ	2.46	CTU	2.32	DEN	2.67
14	DEN	2.49	SFO	2.61	LHR	2.72	YYZ	2.87	LAX	2.42	ATL	2.3	IAH	2.55
15	SIN	2.47	ВКК	2.6	YYZ	2.67	HKG	2.87	DFW	2.4	MIA	2.26	EWR	2.53
16	BOS	2.4	DXB	2.58	SFO	2.66	DFW	2.82	XIY	2.36	SVO	2.26	YYZ	2.5
17	IAD	2.4	EWR	2.57	ICN	2.61	JFK	2.79	ATL	2.33	IAH	2.25	SFO	2.48
18	HKG	2.39	HKG	2.47	CAN	2.6	ICN	2.69	SVO	2.28	DOH	2.22	CAN	2.47
19	PEK	2.39	IAD	2.45	EWR	2.55	DEN	2.64	IAH	2.28	YYZ	2.18	SIN	2.46
20	SFO	2.32	SEA	2.45	DFW	2.52	ВКК	2.63	CKG	2.22	DEN	2.17	MAD	2.45

The pandemic and irport fortunes

Evolution of Chinese hub airport \$006-2022

- "Flow betweeness": HKG falling vsMainland China's connecting gateways: PEK, PVG, CAN (despite HKG's resilient air cargo business)
- HKG vs. SINS(ngapore)
- Rise of DXB (Dubai) and IST (Istanbul)

Indian airports recovered rather wellunder influence of increased domestic traffic; so did African airports (increased intAfrica region)

Implications for the recovery

The pandemic: Devastating impact on aviation (airlines, airport),
 World's airlines lost about \$700 billion in 2020/2021.

With governmentbail-out programs, liberalization would hold back

Higherticket prices

Resilientaviation needed

Further Research: A Research Agenda

- 1. Resilience
- 2. Environmentalfactor
- **3.** Multi-modal
- 4. Land-side accessibility
- 5. Evolution and drivers
- 6. Connectivityand economicperformance
- 7. Connectivityin cargo
- 8. Other transport modes

The academic COVID9 "pandemic"

CORONAVIRUS CASCADE

One estimate suggests that more than 200,000 coronavirus-related journal articles and preprints had been published by early December.

https://www.nature.com/articles/d41586-020-03564-y

Almost at the same time as the outbreak of the COVID9 health pandemic, a parallel pandemic started to develop in the academic literature!

Until the end of 2020, an estimated number of almost 200,000 papers had been published with related keywords.

Aviation is no exception here!

- The reasons for the abundant number of studies on aviation and CONDAre various:
 - Aviation plays a major role in epidemic spreading: While aviation is a victim of COVID-19 ramifications, the effectivity of the system enabled the spread of the virus to farthest places on our planet
 - Aviation is probably among the hardest hit industries. Many stakeholders downstream are affected by the pandemic

[Sun, Wandelt, Zheng and Zhang. COVID-19 pandemic and air transportation: Successfully navigating the paper hurricane. <u>Journal of Air Transport Management</u> 94, 102062, 2021] [Sun, Wandelt, and Zhang. COVID-19 pandemic and air transportation: Summary of recent research, policy consideration and future research directions," <u>Transportation Research Interdisciplinary Perspectives</u> 16, 100718, 2022]

Keywords being used in aviation (e.g. ATRS)

...

Efficiency Optimization Minimization of costs Revenue maximization Competition / Market power Accessibility / Connectivity Economies / tourism Sustainability Green aviation Carbon footprint Clean fuels 'Flight shame' Social responsibility Vulnerability to shocks Resilience Risks 'Circuit breaker' Coopetition

...

- GACI \rightarrow 'GARI' (Global Airport Resilience Index)
- Less vulnerable, and if hit by a shock, the recovery is faster
- Factors under managerial/policy control; other factors more or less given for a given airport

2. Environmental factor

E.g., more emissions from greater connectivity
→ change the ranking

- Modify GACI by incorporating environmental impact

- Opportunities for multi-modal connections

"Connectivity of intercity passenger transportation in China: A multimodal and network approach," Zhu, Zhang and Zhan@@18, J of Trans. Geography) - Zhu et al. (2018) show that with high-speed rail, airport connectivity ranking may change

- "Airport" connectivity index (GACI) can also be extended to "Link (city pair)" connectivity index

4. Land-side accessibility

- An MAR phenomenon: "hub bypassing" may happen for a hub airport with another airport of the same "city"
- But the effective competition may also come from airports closely located in "neighbour cities"
- Also, when you add a new airport, its importance to the network depends on its land-side accessibility

How to incorporate the land-side accessibility into air connectivity measures?

Need to better measure land-side accessibility

- The catchment area of an airport is often defined by travel distance from the airport (e.g. 150 km)
- Sun, Wandelt, and Zhang (2021): accessibility based on 'travel time" – made possible now with (open source) Big Data

Sun et al. (2021): "Comparative accessibility of Chinese airports and highspeed railway stations: A high-resolution, yet scalable framework based on open data," Journal of Air Transport Management

Combine several Open Data sets, including:

- **GriddedPopulation of the World (GPW**) population data at grid cells with a high resolution (<1 sq. km)

- **Openstreetmap(OSM)** public transport, road network
- OpenSourceRoutingMachine(ORSM:)drivingdistance
- Compute free-flow road travel time, as well as the public transit time, from grid cells to an airport

Apply to China more than 10 million grid cells with population and accessibilitydata

5. Evolution and drivers

Drivers:

How contextual factors such as the particularities of the urban, economic and institutional syster(including policy) shape transportationsystem outcomes— in this case, connectivity?

6. Connectivity and economiperformance

- Economic performance (e.g. Tourism, highch sectors): Important policy questions
- Joint together with Gravity models: 1) City; 2) Link
- Issue ofendogeneity

7. Connectivity in cargo

- Air cargo
- Expressdelivery
- More generally, "Logistics performance index"

8. Other transport modes

- Maritime: ports, links
- High-speed rail
- Subway: bike sharing and last nile problem?
- Urban road
- International trade
- Social network

Journal of the Air Transport Research Society

JATRS

Thankyou very much again!