

Universität Karlsruhe Institut für Wirtschaftspolitik und Wirtschaftsforschung

Motorway User Charges for Heavy Goods Vehicles in Germany: Principles, Magnitudes and Expected Impacts

Prof. Dr. Werner Rothengatter University of Karlsruhe Germany

Universität Karlsruhe Institut für Wirtschaftspolitik und Wirtschaftsforschung

Contents

- 1 Introduction
- 2 Principles
- 3 Methodology
- 4 Demand React.
- 5 Conclusions

Overview of cost calculation methodology

- Road asset and transport demand database in line with official German federal investment plan unitl 2015.
- Asset valuation based on current reinvestment costs and observed asset condition
- Cost calculation and allocation differentiated by road segment, region and 21 construction elements.
- Depreciation estimated by using statistical survival probabilities and indicators of traffic-dependent deterioration.
- Cost allocation based on gametheoretical considerations of cost causation and pre-requirements.
- Estimation of emission-depending charges based on dynamic vehicle fleet modelling.

Layers and construction elements

Binder + surface coarse (8+4cm)

Other main coarse (20cm)

Frost protection layer (ca. 45cm)

Underground/ Earthworks

Left: Road pavement scheme;

- Engineering works (considered in bridges database)
- Extra pavement for connecting lanes
- Additional land requirement

Right: Level-free intersections are treated as meta-objects, comprising of:

- Engineering works (considered in bridges database)
- Extra pavement for connecting lanes
- Additional land requirement

Assessment of net capital value

Databases used:

- ZEB (Zustandserfassung der Bundesfernstraßen) for asset condition of pavement layers and bridges
- Road network and HGV traffic forecasts of the federal investment plan (BVWP)
- Opening dates of motorway sections and tunnels
- GIS-Maps of land use and terrain formation

Current condition of concrete bridges by year of construction

Zustandsverteilung kleiner Betonbrücken nach Baujal

Statistical distribution of asset life expectancy

- Functional form of probability-distributed life expectancies: Weibull-distribution used in engineering science for quality tests.
- Influencing parameters: Mean and standard deviation of the life expectancy of new assets and age and condition at the beginning of the forecast period.

The concept of economic depreciation

 $ABS(t) = NV_{normiert}(t) \cdot W(t) - NV_{normiert}(t+1) \cdot W(t+1) + F_{replace}(t) \cdot W(t+1)$

where:

F_{replace}:

t:

T:

- ABS: yearly amount of depreciation
- W: selling value for new asset
- NV_{norm}: normalizing factor
 - replacement/reinvestment between two points of time
 - year considered.
 - Average life expectancy of the asset
- T_{rest}: Remaining life expectancy of the asset

Evolution of capital costs of selected assets with economic depreciation

1. Equipment, Time-based depreciation.

2. Pavement: Load-based depreciation. Life expectency: 25 years

3. Bridges: Time-based depreciation. Life expectrency: 65 years 4. Earthworks/tunnels: Time-based depreciation, Life expectency: 90 years

Interest rate: 4%, price index: 1%, traffic growth 3% p.a.

Composition of running costs

The running costs correspond to expenditures, which can be taken from fiscal budgets/budget plans:

- Expenditures for current maintenance, repair and equipment
- Expenditures for administration,
- Expenditures for traffic police,
- Expenditures for traffic control (including: Federal Agency for Road Freight Transport) and
- Yearly costs of the payment system for the user (according to information of the MOT).

Cost allocation scheme

Forecast of traffic volumes

	2003		2005		2010	
	BAB	BS	BAB	BS	BAB	BS
Vehicle category	Billion v ehicle-km					
Pass. cars	164,7	99,9	170,7	100,3	188,7	105,5
Buses	1,4	1,0	1,5	1,0	1,5	1,0
Motor Bikes	2,1	3,4	2,2	3,5	2,3	3,7
Truck s	24,5	11,8	25,0	12,0	25,8	12,4
Articulated trucks	10,3	2,8	10,8	3,0	12,3	3,3
Other vehicles	2,1	1,9	2,2	2,0	2,5	2,2
Sum	205,2	120,8	212,4	121,7	233,1	128,0

Results (1): Total and average costs by road class and vehicle type

Cost item	2003	2005	2010
Total cost	7,51	8,03	9,30
Motorways [bill. Euro]			
Total cost	7,74	8,13	9,20
Federal Primaries [bill. Euro]			
Road track cos t HGV	3,40	3,62	4,13
Motorways [bill. Euro]			
Road track cos t HGV	2,28	2,44	2,45
Fed. Primaries [bill. Euro]			
Average cost	15,0	15,4	16,3
HGV, Motorways [ct/km]			
Average cost	29,9	31,1	34,1
HGV, Fed. Primaries [ct/km]			

(C)Prof. Dr. Werner Rothengatter, Institute for Transport Policy Studies, 2002

Results (3): HGV motorway charges by environmental standard and axle configuration

Year	Category A	Category B	Category C
2003	EURO-4, -5 + EEV*	EURO-2, -3	EURO-0, -1
2006	EURO-5 + EEV	EURO-3, -4	EURO-0, -1, -2
2009	EEV	EURO-4, -5	EURO-0, -1, -2, -3

* EEV = Enhanced Environmentally Friendly Vehicle

Year	No. of axles	Category A	Category B	Category C
2003	up to 3	10	13	15
	4 and more	12	15	17
2005	up to 3	11	14	16
	4 and more	12	16	18
2010	up to 3	10	12	15
	4 and more	12	15	18

Payment System ''Toll Collect''

Growth of Rail Freight Traffic Comared with the Reference

Scenario 2010

SG = Goods with logistic Requirements, MG = Bulk Cargo, RV = Regional Transport, BFV = Domestic Transport, GFV = International Transport