鉄道立体交差事業とその改善方向

Improving Directions of Railway Grade-separated Intersection

平成14年12月5日 運輸政策研究所 研究員 山本 隆昭 researcher t. Yamamoto

踏切道の存在による弊害

Effects on urban functions by railway crossings

写真: 国土交通省「踏切道改良」パンフレットより

踏切事故の発生 (H13年度445件、死亡者129名)

交通渋滞の発生 (全国のボトルネック踏切渋滞による経済的損失約5,700億円/年)

街の分断化 地域間交流の減少 街のイメージ低下

周辺環境の悪化 踏切騒音 排ガス発生

研究の対象範囲 About the grade-separated intersection

道路立体 オーバーパス アンダーパス

立体交差事業

研究の目的 Objectives of this study

制度・事業推進上の問題点の抽出

改善策の提案

より円滑な事業実施

事業採択評価 合意形成、費用負担 工事施行

都市機能の向上(都市再生)の促進

本日の発表内容 Contents

- 1. 事業の現状 Current Situation
- 2.問題点と改善提案 Issues and Improvement Measures
 - 2 1 採択要件 Project Decision Requirement
 - 2 2 事業評価手法 Project Evaluation System
- 3. 今後の課題 Future Study

1. 事業の現状 Current Situation

連続立体交差事業採択件数の推移

Number of the projects

2.問題点と改善提案 Issues and Improvement Measures

事業採択に必要な条件

Acceptance criterion for project decision

	採択要件	事業評価	判定
事業A			
事業B		×	
事業C	×	()	

2 - 1 主な採択要件 (S44建運協定) Project decision requirement

幹線道路2本以上と交差

両端の幹線道路間350m以上

踏切の除去2箇所を含め合計3箇所以上で立体交差

あらゆる1km区間で5年後の踏切遮断量が

20,000台時/日以上

幹線道路: 一般国道 都道府県道 都市計画道路

© t.yamamoto, Institute for Transport Policy Studies, 2002

事業評価方法 Project evaluation system

現在の主な評価基準

投資効果

 \rightarrow B/C

(交通円滑化、高架下利用)

その他の効果

チェック方式

(面的整備の実施、駅裏解消、 市街地の一体化等)

事業採択に必要な条件

Acceptance criterion for project decision

	採択要件	事業評価	判定
事業A			
事業B		×	×
事業C	×	()	単独立体 (限度額)

[©] t.yamamoto, Institute for Transport Policy Studies, 2002

(徒路事業の単独立体交差)

限度額立体交差事業

自治体負担の増大

踏切道等総合対策事業

認定基準

踏切事故の多発 供用後のスピードアップ等

幹線道路2本以上

ボトルネック踏切が存在する場合は1本以上

両端の幹線道路間350m以上

踏切の除去2箇所を含め合計3箇所以上で立体交差

あらゆる1km区間で 5年後の踏切遮断量が 20,000台時/日以上

踏切3箇所/km以上連 担し計5箇所以上の場合 は10,000台時以上

S44年「建運協定」で規定: 30年以上経過

「 両端道路間350m以上」の緩和

高架線の定義(S39 建国間の費用負担「覚書」)

鉄道側: 500m以上 中間で妥結

道路側: 延長ではなく踏切除去 200m以上

実施中事業の延長 (km)

Extension in project

© t.yamamoto, Institute for Transport Policy Studies, 2002

「 両端道路間350m以上」の緩和

連続立体交差事業の目的の一つ 単独立体 「市街地の一体化・再整備」

駅の存在

周辺の踏切道の立体化(踏切除去2カ所以上)

ホームを挟む2つの踏切道間の距離

ホーム延長L + 踏切道までの距離 (+)

© t.yamamoto, Institute for Transport Policy Studies, 2002

「 両端道路間350m以上」の緩和

(仮想的検証)

	ホーム延長 L	踏切まで の距離 +	合計 L+ +	備考
JR中央線 武蔵小金井駅	210m	7 0m	280m	10両編成

「あらゆる1km区間で5年後の踏切遮断量が 20,000台時/日(10,000台時/日)以上」の廃止

ボトルネック踏切の分布

全国: 約1,000箇所 ピーク時40分以上遮断 OR 50,000台時/日以上

大都市に約56%が集中

大都市への適用意義は少ない

「あらゆる1km区間で5年後の踏切遮断量が 20,000台時/日(10,000台時/日)以上」の廃止

適用意義

- ・ボトルネック踏切の少ない地方都市への門戸開放
- ・事業の無駄な長大化を防ぐ

事業評価における費用対効果(B/C)で判断されるべき

「5年後」の妥当性は?

平均事業期間(事業採択~完成)の推移

「あらゆる1km区間で5年後の踏切遮断量が 20,000台時/日(10,000台時/日)以上」の廃止

「5年後」の妥当性は?

実態との乖離

事業評価で代表できるのではないか?

2 - 1 採択要件の検討(まとめ) Improvement measures of project decision criteria

採択要件 見直し案 ホームを挟む2つの 両端の幹線道路間 踏切道間の距離 350m以上 (駅を含むことを原則) あらゆる1km区間で 廃止 5年後の踏切遮断量が 20,000(10,000)台時/日 (事業評価で代表) 以上

2 - 2 事業評価方法 Project Evaluation System

事業評価方法の問題

Issue of project evaluation system

現在の主な評価基準

投資効果

 \rightarrow B/C

(交通円滑化、高架下利用)

その他の効果

チェック方式

(面的整備の実施、駅裏解消、 市街地の一体化等)

総合評価の方法(両者の重み)が不明確

© t.yamamoto, Institute for Transport Policy Studies, 2002

地域別採択状況(大都市と地方都市)

採択年度

大都市での採択:3~4割

ボトルネック踏切:約6割

© t.yamamoto, Institute for Transport Policy Studies, 2002

構造別採択状況(高架化と地下化)

一貫してコスト主義

総合評価の概要 Comprehensive evaluation

高く評価されるべき連立事業

影響度の高い踏切 (ボトルネック踏切)の除去

関連事業と連携し 相乗効果をもたらす工夫

周辺環境への配慮

実施環境の整備(合意形成、手続き等)

評価項目の階層化 Hierarchization of Evaluation Terms (大項目) (中項目) (小項目) 事業効率 波及的影響 環境 生活環境の保全 景観等の改善 市街地の一体化 緊急活動の円滑化 地域の連帯的活動 地域の合意形成 実施環境 事業の実行性 法的手続きの状況 事業の成立性 上位計画との連携 他事業との連携 技術的難易度 © t.yamamoto, Institute for Transport Policy Studies, 2002

波及的影響の重要性と評価

仙石線事業の特徴

「関連事業と相乗効果をもたらす工夫」

「生活環境の保全」

「景観等の改善」

(地下化の選択)

波及的影響

事業効率 (B/C)

一体的評価が可能

基準作成時の留意点

評価基準の設定 (5点満点を想定)

- ・複数の条件(すべて当てはまれば5点・・)
- ・主観的要素の強い項目事例による尺度の設定

項目間の重み付け

- ・公平性の確保
- ・項目の理解度が高いこと

評価結果総括表イメージ Image of result

評価項目		評価結果	評価点	重み	評価点×重み	満点
事業効率		(B/C値で判断)	4	6	24	30
	小計		4	6	24	30
波及的影響	生活環境の改善	(騒音、振動・・)	4	2	8	10
	景観等の改善	(圧迫感・・)	3	1	3	5
	••					
	小計		4	8	28	40
実施環境	地域の同意	(合意形成・・)	3	2	6	10
	法手続きの状況	(都市計画決定・・)	4	1	4	5
	••					
	小計		3	6	18	30
合計			3.7	20	74	100

·評価点: 1~5(5段階)

74/100

・重み: 合計20 © t.yamamoto, Institute for Transport Policy Studies, 2002

評価結果考察イメージ Image of result

波及的影響 Indirect Effect 実施環境 Condition of Implementation

2 - 2 事業評価方法の検討 (まとめ) Improvement measures of Project Evaluation System

事業評価手法について

評価過程の透明性向上

波及的影響等も含めた総合評価手法の確立

制度の柔軟化

立体化後における土地利用の柔軟化(土地売却も視野)

鉄道路線計画の柔軟化 (地域の交通ネットワーク、関連事業との相乗効果)

3. 今後の課題 Future Study

評価手法の実用化

改善提案の検討

「費用負担」、「事業期間の長期化」

事業意欲を向上するためのインセンティブ