一般財団法人 運輸総合研究所 研究報告会 2017年秋(第42回)

# 空港発着枠の最適配分に関する研究 -福岡空港を対象とした分析-

# Analysis of Optimal Slot Allocation Problem for Fukuoka Airport



(C) Dr. Huseyin TIRTOM , Japan Transport Research Institute, 2017

- 1) Introduction and Objective
- 2) Part 1: Slot Distribution System in Japan
- Part 2: Analysis of Optimal Slot Distribution for Fukuoka Airport
  - Airline Choice Model
  - Airfare Calculation
  - Optimization with Genetic Algorithm
- 4) Preliminary Results
- 5) Conclusions & Future Works

### 1) Introduction and Objective

- A Low Cost Carrier is an airline that generally has lower fares with less comforts
- Studies indicated that LCC growth may increase Consumer Surplus
- Airport managers and local governments welcome LCC development as they generate new traffic in most cases
- Japanese Government also supports LCC development to stimulate air travel demand, increase tourist numbers and enhance regional economies.



- In Japan, LCCs started as late as 2012, but managed a high growth rate and gained ~10% market share.



Source: Yoichi Hirotani, Development Bank of Japan

Source: Ministry of Land Infrastructure and Transport

However, recently domestic LCC growth in Japan seems slowed down and their focus shifted to international lines.

- Still, LCC operators have plans for domestic growth but they put forward several problems:
  - Increased competition
  - Airport access issues
  - Limited airport hours
  - Pilot shortage
  - Scarcity of slots



Source: Ministry of Land Infrastructure and Transport

### Introduction Slowing Growth

LCC growth affected by slot scarcity in Fukuoka



#### LCC routes to: Narita, Kansai, Chubu and Naha

LCCs have the potential to increase social welfare but growth is slowing down.

One likely solution: Increase LCC slots in congested airports. But... Is it possible? Is it feasible?



My objective is to investigate <u>possibility</u> and <u>feasibility</u> of introducing <u>new slot distribution rules</u> favoring <u>LCCs</u> to increase <u>social welfare</u>.

### 1) Introduction and Objective

### 2) Part 1: Slot Distribution System in Japan

Airport slots are specific time periods allotted for an aircraft to land or take off at an airport.

If demand for slots at an airport exceeds the capacity, the airport is considered as "capacity-constrained", and "slot allocation" process is implemented.

There are two approaches to slot allocation:

- 1. Administrative:
  - Airport owner sets up rules and distributes slots accordingly
- 2. Market based:
  - Congestion pricing, slot auctions, secondary trading etc.

Slot distribution of 5 congested airports (Narita, Kansai, Haneda, Shin-Chitose and Fukuoka) are controlled by Japan Schedule Coordination (JSC), an independent, nonprofit organization.



Chronology of Haneda Slot Distributions



Source: MLIT Civil Aviation Bureau (2007)

(C) Dr. Huseyin TIRTOM , Japan Transport Research Institute, 2017

#### **Competitive Forces**

OIn order to promote competition, new entrants are given priority in slot allocation at Haneda Airport, Tokyo's domestic hub airport.

- Priority given when additional landing slots are made available
- Some slots are withdrawn from the incumbents and re-allocated to new entrants when five-year duration period of the approval ends.



Part 1

### **Diversity of Networks**

OIncremental slot allocation is provided to airlines that contribute

to diverse nation-wide networks

·Appraisal of historic operation is reflected to slot allocation to incumbent carriers

 Criteria for appraisal includes diversity of nation-wide networks

#### Criteria for diversity of nation-wide networks

1)Contribution to network diversity

Increase in low-density routes in past five years

Increase in airports with over-night aircraft stay

2 Contribution to accessibility to local airports

Percentage of non-trunk routes at Haneda airports exceeds 50%

Percentage of landing slots in the recent allocation case used for non-trunk routes exceeds 50%



Trunk route: routes between Haneda, Sapporo (New-Chitose), Itami, Kansai, Fukuoka and Naha

Source: MLIT Civil Aviation Bureau (2007)

> Airport slots belong to public not to airlines.

- Past practices indicate that in certain times slots were taken from incumbent operators and given to new entrants to increase competition and diversity.
- Therefore, it is worth considering to do the same for LCCs if it improves social welfare.

### 1) Introduction and Objective

### 2) Part 1: Slot Distribution System in Japan

### Part 2: Analysis of Optimal Slot Distribution for Fukuoka Airport

### Capacity Constraints at Fukuoka Airport



(C) Dr. Huseyin TIRTOM Japan Transport Research Institute, 2017

In 2015 Fukuoka Airport was designated as "congested airport" by MLIT and operations were restricted to 35 take-off/ landing per hour



Source: Japan Slot Coordination

(C) Dr. Huseyin TIRTOM , Japan Transport Research Institute, 2017

**Objective:** Finding optimal slot distribution to maximize social welfare (consumer surplus + operator surplus)



1

(C) Dr. Huseyin TIRTOM, Japan Ukupokae Airportoslot distribution in summer 2016

Haneda

Okinawa

Miyazaki Narita

Chubu



- Each chromosome consist of three parts to represent FSC, Skymark and LCC frequencies to 24 destinations
- Fitness evaluation is done by checking social welfare



#### Indirect Utility Function:



where; i:individual, j:product

#### Mean Utility Function:

 $\delta_{j} = \alpha * Fare + \beta_{0} + \beta_{1} * Log(Frequency) + \beta_{2} * Rail Time + \beta_{3} * Log(Seats) + \beta_{4} * SKY + \beta_{5} * LCC + \xi_{j}$ 



#### In the case of multiple airports: Mode Choice JAL-1 FUK O ANA-2 JAL-2 KIX JAL-2 KIX JAL-1 JAL-2 ANA-1 ANA-2 ANA-2

Assuming  $\lambda$ =1 and normalizing outside good's utility as  $\delta_{Outside} = 0$  ;

$$M_{Outside} = \frac{1}{1 + e^{\delta_{Air}}} \qquad \qquad M_{Air} = \frac{e^{\delta_{Air}}}{1 + e^{\delta_{Air}}}$$

$$\ln(M_k) - \ln(M_{Outside}) = \frac{\delta_k}{\delta_k} + \left(1 - \frac{1}{\gamma}\right) \ln(M_{k/Air}) + \xi_j$$

(C) Dr. Huseyin TIRTOM , Japan Transport Research Institute, 2017

A person's consumer surplus is the utility, in monetary terms, that the person receives in the choice situation:



Consumer Surplus Change for one person in MNL:

$$\Delta E(\mathrm{CS}_n) = \frac{1}{\alpha_n} \left[ \ln \left( \sum_{j=1}^{J^1} e^{V_{nj}^1} \right) - \ln \left( \sum_{j=1}^{J^0} e^{V_{nj}^0} \right) \right]$$

Total Consumer Surplus Change in NL with fixed total demand

$$\Delta E(CS) = \frac{T}{\beta} \left[ \ln \left( e^{\delta_{Air}^{1}} + 1 \right) - \ln \left( e^{\delta_{Air}^{0}} + 1 \right) \right]$$

#### *T*:*Outside Good + Airline demand*

Part 2 Data

- Standard Airfare, Frequency and Seat information are taken from timetables (2013-2016)
- Air passengers data is taken from 航空輸送サービス係る情報 (2013-2016)

| (2 | )路線別データ |       |                          |            |                    |                                       | 輸送人員(人)    | 旅客収入(百万円) |
|----|---------|-------|--------------------------|------------|--------------------|---------------------------------------|------------|-----------|
|    | 区間      | 区間距離  | 平成27年度<br>問距離 <u>年度計</u> |            |                    | 日本航空(注3)<br>(法人番号 7010701007666)      | 27,213,377 | 433,122   |
| T  |         | (Km)  | 旅客数 🗸                    | 座席数        | 座席<br>利用率<br>(%) ▼ | 全日本空輸(注3)<br>(法人番号 1010401039027)     | 42,753,163 | 674,954   |
| 1  | 東京-札幌   | 894   | 9,016,082                | 12,463,673 | 72.3               | 日本トランスオーシャン航空<br>(法人番号 3360001001727) | 2,733,449  | 34,366    |
| 2  | 東京-大阪   | 514   | 5,194,556                | 7,255,909  | 71.6               | スカイマーク<br>(法人番号 7010801019529)        | 6,015,948  | 70,381    |
| 3  | 東京-関空   | 678   | 1,150,833                | 1,747,750  | 65.8               | AIRDO                                 | 1 005 060  | 29.057    |
| 4  | 東京-福岡   | 1,041 | 8,158,953                | 11,322,294 | 72.1               | (法人番号 6430001021797)                  | 1,020,903  | 20,007    |

- Ticket Type data is taken from 航空旅客動態調查 (2013, 2015)

|          | 航空券の         | 種類   |       |      |      |     |
|----------|--------------|------|-------|------|------|-----|
| 路線名      | 普通運賃         | %    | 往復割月  | %    | 乗継害归 | %   |
| 新千歳 一 羽田 | 8 1,681      | 15.5 | 1,992 | 18.4 | 122  | 1.1 |
| 羽田 一 伊邦  | 1,173        | 12.5 | 1,779 | 18.9 | 81   | 0.9 |
| 羽田 一 福岡  | 司 1,821      | 16.2 | 1,936 | 17.2 | 70   | 0.6 |
| 羽田 — 那覇  | <b>万</b> 732 | 13.6 | 669   | 12.4 | 54   | 1.0 |
| 新千歳 一 伊丹 | 102          | 15.6 | 93    | 14.2 | 6    | 0.9 |
| 伊丹 一 福岡  | 引 194        | 14.1 | 176   | 12.8 | 17   | 1.2 |

- Total Demand (including no travel) is calculated as geometric average of city populations

- Parameters were calibrated with 2SLS method using HHI index, distance and monopoly dummy as instrument variables
- Test results show that coefficients are meaningful and significant
- R-squared is acceptable

| Variable            | Coefficient | t-stat |  |  |  |  |
|---------------------|-------------|--------|--|--|--|--|
| Intercept           | -8.24       | -19.91 |  |  |  |  |
| Log (Frequency)     | 0.94        | 13.18  |  |  |  |  |
| Fare (10,000 ¥)     | -1.12       | -6.50  |  |  |  |  |
| Log (Average Seats) | 0.97        | 8.86   |  |  |  |  |
| Sigma               | 0.25        | 3.82   |  |  |  |  |
| LCC dummy           | -0.68       | -2.72  |  |  |  |  |
| SKY dummy           | -0.70       | -3.42  |  |  |  |  |
| Rail Time           | 0.71        | 11.20  |  |  |  |  |
| Adj. R^2            | 0.71        |        |  |  |  |  |
| Observations        | 208         |        |  |  |  |  |

(C) Dr. Huseyin TIRTOM , Japan Transport Research Institute, 2017

\*Airline classification:

| Airline | Unit Revenue<br>(¥/pax-km) | Group    |  |  |  |
|---------|----------------------------|----------|--|--|--|
| Jetstar | 7.7                        | LCC      |  |  |  |
| Peach   | 7.8                        | LCC      |  |  |  |
| SKY     | 10.0                       | SKY      |  |  |  |
| JTA     | 12.8                       | FSC      |  |  |  |
| JAL     | 16.9                       | FSC      |  |  |  |
| SFJ     | 17.0                       | FSC      |  |  |  |
| ANA     | 17.3                       | FSC      |  |  |  |
| IBX     | 20.2                       | Regional |  |  |  |
| FDA     | 22.6                       | Regional |  |  |  |
| AMX     | 34.8                       | Regional |  |  |  |
| JAC     | 35.2                       | Regional |  |  |  |
| ORC     | 49.3                       | Regional |  |  |  |

\*Rail time is categorized as;

1: less than 200min.

2: between 200-400 min.

3: between 400-600 min.

4: over 600 min.

Part 2

#### **Observed vs Estimated Passengers**



(Observed Rassengers reset thousand passengers per year)

We try to estimate fare as a function of distance for two cases:

```
y = a + b^*distance
```

a) In the case of competition: - using average fares from competitive routes

b) In the case of monopoly:- using average fares from monopoly routes

Part 2 Airfare Calculation (FSC)



(C) Dr. Huseyin TIRTON Distance (Representation of the second sec



#### Performance of the Model







(C) Dr. Huseyin TIRTOM , Japan Transport Research Institute, 2017

#### Definitions:

 $\delta_{j} = \alpha * Fare + \beta_{0} + \beta_{1} * Log(Frequency) + \beta_{2} * Rail Time + \beta_{3} * Log(Seats) + \beta_{4} * SKY + \beta_{5} * LCC$ 

| $\delta_{Air\_od} = \frac{1}{\gamma} \ln\left(\sum_{n} e^{\gamma \delta_{nod}}\right)$                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $P_{jod} = \begin{cases} a_1 + b_1 * D_{od} & \text{if there is competition} \\ a_2 + b_2 * D_{od} & \text{if there is no competition} \end{cases}$ |
| $Q_{jod} = T_{od} * \frac{e^{\gamma \delta_{jod}}}{\sum_{n} e^{\gamma \delta_{n}}} * \frac{e^{\delta_{Air_od}}}{1 + e^{\delta_{Air_od}}}$           |
| $CS_{od} = \frac{T_{od}}{\alpha} \left[ \ln \left( e^{\delta_{Air_od}^1} + 1 \right) - \ln \left( e^{\delta_{Air_od}^0} + 1 \right) \right]$        |
| $OS_{od} = \sum_{j} \left[ \left( Q_{jod} * P_{jod} \right) - \left( \frac{Fr_{jod}}{Fr_{jod}} * S_{jod} * D_{od} * c_{j} \right) \right]$          |

**Objective Function:** 

$$Max \sum_{od} (CS_{od} + OS_{od})$$

Constraints:

$$\sum_{jod} Fr_{jod} = Fr_{od,total} \quad , \quad \sum_{od} Fr_{jod}$$

$$\sum_{od} Fr_{jod} = Fr_{j,total}$$

CS **Consumer Surplus** OS **Operator Surplus** OD Demand (including Т outside option) δ **Utility Function** Q Passengers Ρ Airfare Frequency Fr Number of Seats S **OD** Distance D Unit costs (¥/seat-km) С FSC:9.3, SKY:8.9, LCC:7.7

### 1) Introduction and Objective

- 2) Part 1: Slot Distribution System in Japan
- 3) Part 2: Analysis of Optimal Slot Distribution for Fukuoka Airport
  - Airline Choice Model
  - Airfare Calculation
  - Optimization with Genetic Algorithm
- 4) Preliminary Results

### Preliminary Results Comparison of 3 Cases

| Case 1 | - To                                      | tal fligh                                                                                                                                                                 | ts to each c | lestinat                                            | ion is fixed |      |   |     | No<br>aire | consi<br>craft r | deratio<br>numbe | on of<br>rs |  |
|--------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------|--------------|------|---|-----|------------|------------------|------------------|-------------|--|
| Case 2 | - To<br>- To                              | <ul> <li>Total flights to each destination is fixed</li> <li>Total flights of each group is fixed (FCC:99,SKY:18,LCC:17)</li> <li>Similar to actual conditions</li> </ul> |              |                                                     |              |      |   |     |            |                  |                  |             |  |
| Case 3 | - To<br>- FS<br>- To                      | tal fligh<br>C flights<br>tal fligh                                                                                                                                       | LCC<br>to t  | LCC flights increased<br>to the detriment of<br>FSC |              |      |   |     |            |                  |                  |             |  |
| × 40 → | Operator Surplus<br>33.4 Consumer Surplus |                                                                                                                                                                           |              |                                                     |              |      |   |     |            |                  |                  |             |  |
|        |                                           | 10.5                                                                                                                                                                      |              |                                                     |              | 20.5 | ] | FLI | GHTS       | FSC              | SKY              | LCC         |  |
|        |                                           |                                                                                                                                                                           |              | /.1                                                 |              | 6.2  |   | Ca  | se 1       | 117              | 4                | 13          |  |
| 20 -   |                                           |                                                                                                                                                                           |              |                                                     |              |      |   |     |            |                  |                  |             |  |
|        |                                           |                                                                                                                                                                           |              |                                                     |              |      |   |     | co 2       | aa               | 18               | 17          |  |

|      |        | (C) Dr. Husey | in TIRTOM , Japan Tran | sport Research I | nstitute, 2017 |
|------|--------|---------------|------------------------|------------------|----------------|
|      | Case 1 | Case 2        |                        | Case 3           |                |
| 0 -  |        |               |                        |                  |                |
| 10 - |        |               |                        |                  |                |
| 10   | 22.9   | 21.9          |                        | 22.1             |                |
| 20 - |        |               |                        |                  |                |
|      | 10.5   | 7.1           |                        | 6.2              |                |

| FLIGHTS | FSC | SKY | LCC |
|---------|-----|-----|-----|
| Case 1  | 117 | 4   | 13  |
|         |     |     |     |
| Case 2  | 99  | 18  | 17  |
|         |     |     |     |
| Case 3  | 89  | 23  | 22  |

## Preliminary Results Case Comparisons

|    | Actual Situation |           |     | Case 1 |     |     | -   | Case 2 |     |  | _   | Case 3 |     |  |     |     |     |
|----|------------------|-----------|-----|--------|-----|-----|-----|--------|-----|--|-----|--------|-----|--|-----|-----|-----|
| No | Destination      | Total Fr. | Reg | FSC    | SKY | LCC | FSC | SKY    | LCC |  | FSC | SKY    | LCC |  | FSC | SKY | LCC |
| 1  | 新千歳              | 5         |     | 3      | 2   |     | 3   |        | 2   |  | 1   |        | 4   |  |     |     | 5   |
| 2  | 花巻               | 1         |     | 1      |     |     | 1   |        |     |  |     |        | 1   |  |     |     | 1   |
| 3  | 仙台               | 5         | 1   | 4      |     |     | 2   |        | 2   |  |     | 3      | 1   |  |     |     | 4   |
| 4  | 茨城               | 1         |     |        | 1   |     |     |        | 1   |  |     | 1      |     |  | 1   |     |     |
| 5  | 東京               | 65        |     | 46     | 11  | 8   | 64  |        | 1   |  | 64  |        | 1   |  | 62  | 1   | 2   |
| 6  | 新潟               | 3         | 1   | 2      |     |     | 1   | 1      |     |  |     |        | 2   |  |     |     | 2   |
| 7  | 小松               | 4         | 3   | 1      |     |     |     |        | 1   |  |     |        | 1   |  | 1   |     |     |
| 8  | 松本               | 2         | 2   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 9  | 静岡               | 4         | 4   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 10 | 名古屋              | 17        | 6   | 9      |     | 2   | 10  |        | 1   |  | 11  |        |     |  | 11  |     |     |
| 11 | 伊丹               | 16        | 2   | 9      |     | 5   | 14  |        |     |  | 13  | 1      |     |  | 14  |     |     |
| 12 | 出雲               | 2         | 2   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 13 | 徳島               | 2         | 2   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 14 | 松山               | 5         | 5   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 15 | 高知               | 4         | 4   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 16 | 福江               | 4         | 2   | 2      |     |     | 1   | 1      |     |  | 1   | 1      |     |  |     | 1   | 1   |
| 17 | 対馬               | 4         |     | 4      |     |     | 2   | 2      |     |  |     | 4      |     |  |     | 4   |     |
| 18 | 天草               | 2         | 2   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 19 | 宮崎               | 14        | 11  | 3      |     |     |     |        | 3   |  |     |        | 3   |  |     | 2   | 1   |
| 20 | 鹿児島              | 2         | 2   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 21 | 屋久島              | 1         | 1   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 22 | 奄美大島             | 1         | 1   |        |     |     |     |        |     |  |     |        |     |  |     |     |     |
| 23 | 那覇               | 20        |     | 14     | 4   | 2   | 19  |        | 1   |  | 8   | 8      | 4   |  |     | 15  | 5   |
| 24 | 石垣               | 1         |     | 1      |     |     |     |        | 1   |  | 1   |        |     |  |     |     | 1   |
|    | Total            | 185       | 51  | 99     | 18  | 17  | 117 | 4      | 13  |  | 99  | 18     | 17  |  | 89  | 23  | 22  |

35

(C) Dr. Huseyin T R foto, Japan 33 ans billing start Institute, 5005

29.0 billion ¥

28.3 billion ¥ CS+OS

### 1) Introduction and Objective

- 2) Part 1: Slot Distribution System in Japan
- 3) Part 2: Analysis of Optimal Slot Distribution for Fukuoka Airport
  - Airline Choice Model
  - Airfare Calculation
  - Optimization with Genetic Algorithm
- 4) Preliminary Results

### 5) Conclusions & Future Works

# There are some limitations in this study such as:

- Model parameters were calibrated using aggregate data
- Effect of departure time was not taken into account
- # Still, results indicate that:
  - Better distributions are possible
  - Assigning more slots to LCCs increases Consumer
     Surplus, but not necessarily improves Social Welfare
  - LCC slots are better utilized at distant destinations.

- # Improvement of airline choice model
  - using individual survey data
  - including departure time as an explanatory variable
- # Consideration of variable slot assignments to destinations
- # Consideration of costs that will be incurred by each airline in the case of a slot distribution change

# Thank you for your kind attention

