

Low Cost Carriers and Transport Network Efficiency

格安航空(LCC)の

都市間交通ネットワーク効率への影響に関する研究

2015年11月16日

TIRTOM Huseyin

Contents

目次

1 Introduction

はじめに

2 Objective

本研究の目的

3 Methodology

分析方法

- 4 A Simplified Example 実証分析例
- 5 Conclusion

結 論

6 Future Works

今後の研究課題

- A Low Cost Carrier is an airline that generally has <u>lower fares</u> with less comforts
- To increase revenue, they may charge for extras (food, baggage etc.)

Introduction Low Cost vs Full Cost コストの比較 - LCC 対フルコスト

Cost Comparison between BMI (UK) and Easyjet

Source: Flying Off Course: Airline Economics and Marketing (Fourth Edition) - by Rigas Doganis (2010)

Introduction Low Cost vs Full Cost コストの比較(英国の場合)

LCC Characteristics	Cost Advantage over FSC (%)
Higher seating density	16
Higher aircraft utilization	18
Lower flight and cabin crew cost	21
Cheaper secondary airports	25
Single aircraft / outsourcing maintenance	27
Minimal station cost	34
Fewer passenger services	39
No agents or GDS	45
Reduced sales / reservation cost	48
Smaller administration and fewer staff	51
Total	49 %

Cost Comparison between BMI (UK) and Easyjet

Source: Flying Off Course: Airline Economics and Marketing (Fourth Edition) - by Rigas Doganis (2010)

FSCs(フルサービス航空)

- Have hub-and-spoke networks with larger geographical coverage
- Use major airports, provides frequent and convenient flights
- Provide comfortable flights (business class, larger seats, frills etc.)
- Provide better ground services and customer support
- Extend their destinations with codeshare agreements
- Have loyalty programs and better brand image

Introduction LCC development in the world 世界のLCC発展

Source: Mark Diamond, ICF, SH&E

Introduction LCC market share in the world 世界のLCC市場シェア

8

Source: Yoichi Hirotani, Development Bank of Japan

Source: LCC 参入による地域への経済波及効果に関する調査研究, 2015

- LCCs are considered good for tourism and regional economy.
- Airport managers and local governments support LCC airlines
- Japanese Government also welcomes LCC growth.
- Government aims 14% domestic LCC share by 2020.

LCCs are growing fast in a favorable environment. But, how much growth is safe for JAL, ANA and JR?

Source: 交通政策基本計画 (2015年)

LCC – FSC – HSR Competition 格安航空、フルサービス航空、高速鉄道の競争

Source: NFO Intratest, 2002: Monitor Group Analysis, Hapaq Lloyd, The Future of Air Travel conference, London, 8-9 November 2004

LCC – FSC – HSR Competition 格安航空とフルサービス航空と高速鉄道の競争

HSR and air costs per passenger, by route length

Source: HSR vs LCC: competing or complementary modes?, Stephen Perkins, 2014

LCC – HSR Competition 格安航空と高速鉄道の競争(ドイツの事例)

Impact of LCC entry on DB Cologne-Hamburg

Source: The Functioning of Inter-modal Competition in the Transportation Market: Evidence from the Entry of Low-cost Airlines in Germany Friebel and Nifka, 2005

LCC – FSC Competition 格安航空とフルサービス航空の競争(欧州)

Low Cost Routes 2000

Low Cost Routes 2006

 LCC seem harmless at first, but they can be destructive for FSC on longer term.

Summary and Objective

- LCC development in Japan started late but now it is growing fast.
- LCCs are good for people but adversely affect FSCs and HSR.
- It is important to measure these benefits and costs.
- Therefore, in this study I intend to propose a framework to analyze LCC growth benefits for people and costs to other operators.

Research Questions

- What happens if LCCs reach 15% domestic market share?
- What happens if LCCs reach 25% domestic market share?
- How much benefit will people gain?
- How much revenue will be lost for FSC and HSR?
- How to manage rapid increase of LCC share?

LCC Growth Scenarios

 Exogenously increase LCC flight numbers to match 15% (25%) market share

Network Simulation

- Estimate new OD demand (trip generation/distribution)
- Distribute demand to lines (route choice/mode choice)

Network Analysis • Calculate and compare users` benefits (total travel time, total users cost), operators` loss (cost and revenue).

- 20 prefectures as zones,
- 23 airports with rail connections,
- Shinkansen + Airline network.
- Covers 82% of population and %75 of domestic air traffic

Methodology LCC Growth Scenarios

Target Year: 2020

Slot distribution policy at congested airports

Example:

Priority to FSC

15% (2020)

O 4 0 4 8

25% (2020)

便/日		Narita	Chubu	Kansai	Narita
V a ma abima a	FSC	0	4	0	0
Kagoshima	LCC	2	2	4	4

Current (2015)

Narita	Chubu	Kansai
0	4	0
6	6	12

Gravity model below will be used to estimate OD demand:

$$\begin{split} T_{OD}^{NW} &= \Lambda(N_1)^{\alpha} (N_2)^{\beta} (LOS_{OD})^{\gamma} \\ LOS_{OD} &= \sum_{m} \exp(V_{OD}^{m}) \quad V_m = \beta_{GC} GC_m + \beta_{m1} c_{m1} + \beta_{m2} c_{m2}, \\ GC_m &= C_m + 0.3 T_m \quad T_m = \sum_{i \in m} t_i + \sum_{j \in m} \frac{d_j}{S_j} + \sum_{k \in m} t a_k + w_m + s_m \\ w_m &= \frac{1}{2} \frac{18}{F_m} \end{split}$$

 N_1, N_2 : city populations, LOS: Service level, V_m : Utility of mode m, GC: Generalized cost, T_m : travel time for mode m, t_i : link travel time, w_m : average waiting time, s_m : transfer time F_m : frequency

¹⁾ Okumura, M. and Tsukai, M. "Air-Rail Inter-modal Network Design Under Hub Capacity Constraint", Journal of the Eastern Asia Society for Transportation Studies, Vol. 7, 2007

Methodology OD Groups

- OD demand is divided based on income levels and travel purpose.
- Numbers will be calculated based on surveys from past studies.

Methodology Network Planning Model ネットワーク・プラニング・モデル

OD Demand

	А	В	С
Α	-	60	60
В	60	-	60
С	60	60	-

Time Value: 2

Parameters

	Fare	Time	Capacity
Rail	15	30	40
Shinkansen	20	20	100
Air	30	20	40

OBJECTIVE FUNCTION:

INPUT:

Minimize Total Generalized Cost (travel time*time value + fare)

OUTPUT:

Methodology Network Planning Model ネットワーク・プラニング・モデル

Objective Function

minimize
$$GC = v * [(\sum_{i} \sum_{j} \sum_{m} t_{ij}^{m} \sum_{k} X_{ij}^{km}) + (\sum_{n} \sum_{m} \sum_{m'} \tau_{n}^{mm'} \sum_{k} Y_{n}^{kmm'})] + (\sum_{i} \sum_{j} \sum_{m} f_{ij}^{m} \sum_{k} X_{ij}^{km})$$
Generalized Cost

travel time

transfer time

fare

Variables and Parameters:

 X_{ij}^{km} : Traffic amount on a link *ij* originated from node *k* by mode *m*,

 Y_n^{kmm} : Transit passengers between mode m to m at node n, originated from node k

 A_n^{km} , B_k^{m} : Ended trips and originated trips at node k using mode m

 T_{kn} : OD demand between k and n

 t_{ij}^{m} , τ^{mm} : Travel time and transfer time

h^m, g^m: Seat capacity and max. operable frequency of mode m

 f_{ii}^{m} : Fare

v: Value of time

Constraints:

$$\sum_{k \in N^{-}(n)} X_{in}^{km} = A_n^{km} + \sum_{m' \in M} Y_n^{kmm'} \qquad \sum_{m} A_n^{km} = T_{kn} \qquad \sum_{k} X_{ij}^{km} \le h^m g^m$$

$$B_n^m + \sum_{m' \in M} Y_n^{km'm} = \sum_{j \in N^+(n)} X_{nj}^{km} \qquad \sum_{l \in K} T_{nl} = \sum_{m \in M} B_n^m$$

- Benefit to users: avg. travel time, avg. travel cost
- Cost to operators: operators` revenue loss
- Network efficiency: unit cost of travel

A Simplified Example Small Scale Network 小規模ネットワーク

- OD demand is fixed and same as year 2010.
- Users are not divided by travel purpose or income.
- Value of time is assumed as 25¥/min.
- No capacity limitation at airports.
- Load factors are assumed as: %65 for FSC, %80 for LCC and %65 for HSR

- Seat numbers are assumed as: 350 for FSC, 150 for LCC and 1000 for HSR, (390 for Kyushu trains)
- CO₂ coefficients (g/pax-km): 144 for FSC, 112 for LCC,
 12.3 for HSR
- Operating costs are assumed as follows:
 - For FSC: 200seats X ticket fare per flight
 - For LCC: 110seats X ticket fare per flight
 - For HSR: 600seats X ticket fare per service (230 for Kyushu trains)

1 !1.	Freque	ncies (Pi	rovided)		Passengers		Freque	ncies (A	djusted)
Link	Base	15%	25%	Base	15%	95%	Base	15%	25%
Hokkaido-Miyagi	35	35	35	1,083	934	934	2	2	2
Hokkaido-Miyagi	15	15	15	0	0	0	0	0	0
Hokkaido-Aichi	15	15	15	1,458	1,218	978	1 7	6	5
Hokkaido-Aichi	2	4	6	240	480	1 720	2	4	6
Hokkaido-Hiroshima	2	2	2	331	331	331	2	2	2
Hokkaido-Fukuoka	5	5	5	890	890	1 890	4	4	4
Hokkaido-Haneda	56	56	56	12,740	10,969	9.049	56	49	40
Hokkaido-Narita	3	3	3	0	1 0	1 0	0	0	0
Hokkaido-Narita	16	32	48	1.920	3,640	5.760	16	32	48
Hokkaido-Itami	15	15	15	2,576	1,616	656	12	8	3
Hokkaido-Kansai	7	7	7	0	0	10	0	0	0
Hokkaido-Kansai	8	16	24	960	1 1,920	2 880	<u>i</u> 8	16	24
Miyagi-Tokyo	103	103	103	13,192	13,043	13,043	21	21	21
Miyagi-Aichi	7	7	7	Ō	1 O	1 0	0	0	0
Miyagi-Hiroshima	2	2	2	201	201	201	1		1
Miyagi-Fukuoka	6	6	6	Ü	0	Û	0	0	0
Miyagi-Narita	2	2	2	0	1 0		0	0	0
Miyagi-Itami	16	16	16	1,093	613	133	5	3	1
Miyagi-Kansai	4	8	12		j 960	1.440	1 4	8	12
Tokyo-Aichi	219	219	219	84,877	82,477	1 80,077	131	127	124
Aichi-Osaka	209	209	209	74.200	71.061	69.701	115	111	108
Aichi-Fukuoka	10	10	10	2,275	1 2,162	1,922	10	10	9
Aichi-Fukuoka	2	4	6	240	480	720		4	6
Aichi-Kumamoto	3	3	3	682	334	214	3	2	1
Aichi-Kumamoto	1	2	3	120	240	1 360		2	3
Aichi-Kagoshima	4	4	4	108	1 0	10	11	0	0
Aichi-Kagoshima	2	4	6	240	480	720	2	4	6
Aichi-Haneda	3	3	3	0	0	[0	0	0	0
Aichi-Narita	4	4	4	Û	0	0	0	0	0
							Rail	FSC	LCC

1	Frequencies (Provided)			Passengers		Freque	ncies (R	Frequencies (Resulting)			
Link	Base	15%	25%	Base	15%	25%	Base	15%	25%		
Osaka-Hiroshima	124	124	124	17,741	15,701	13,661	28	25	22		
Hiroshima-Fukuoka	108	108	108	10,768	11,248	11,728	17	18	19		
Hiroshima-Haneda	17	17	17	3,867	3,867	3,867	17	17	17		
Hiroshima-Narita	1	1	1	0	0	0	0	0	0		
Hiroshima-Narita	3	6	9	360	720	1,080	3	6	9		
Fukuoka-Kumamoto	71	71	71	8,776	8,649	8,649	35	35	35		
Fukuoka-Kagoshima	2	2	2	0	0	0	0	0	0		
Fukuoka-Haneda	71	71	71	16,152	16,152	16,152	71	71	71		
Fukuoka-Narita	3	3	3	0	0	0	0	0	0		
Fukuoka-Narita	9	18	27	1,080	2,160	3,240	9	18	27		
Fukuoka-Itami	10	10	10	2,275	2,275	2,275	10	10	10		
Fukuoka-Kansai	1	1	1	227	227	227	1	1	1		
Fukuoka-Kansai	5	10	15	600	1,200	1,800	5	10	15		
Kumamoto-Kagoshima	48	48	48	5,702	5,601	5,601	23	23	23		
Kumamoto-Haneda	19	19	19	2,814	2,574	2,334	13	12	11		
Kumamoto-Narita	2	4	6	240	480	720	2	4	6		
Kumamoto-Itami	9	9	9	1,449	1,329	1,209	7	6	6		
Kumamoto-Kansai	1	2	3	120	240	360	1	2	2		
Kagoshima-Haneda	23	23	23	3,063	2,823	2,583	14	13	12		
Kagoshima-Narita	2	4	6	240	480	720	2	4	6		
Kagoshima-Itami	13	13	13	1,415	904	184	7	4	1		
Kagoshima-Kansai	4	8	12	480	960	1,440	4	8	12		
Haneda-Itami	40	40	40	9,100	9,100	9,100	40	40	40		
Haneda-Kansai	11	11	11	0	0	0	0	0	0		
Narita-Itami	4	4	4	0	0	0	0	0	0		
Narita-Kansai	8	16	24	960	1,920	2,880	8	16	24		
Total				361,636	362,008	362,608					
							Rail	FSC	LCC		

	1 :1-	Freque	ncies (P	rovided)		Passengers			Freque	encies (Adjusted)	
	/ Link	Base	15%	25%	Base	15%	25%	%	Base	15%	25%	
	Hokkaido-Miyagi	35	35	35	1,083	934	934		2	2	2	
	Hokkaido-Miyagi	15	15	15	0	0	0		0	0	0	
	Hokkaido-Aichi	15	15	15	1,458	1,218	978		7	6	5	
	Hokkaido-Aichi	2	4	6	240	480	720		2	4	6	\
	Hokkaido-Hiroshima	2	2	2	331	331	331		2	2	2	
	Link	Fre	quenc	cies (P	rovided)			Pas	ssenge	ers		
	LINK	Bas	se	15%	25%	Base)		15%		25%	/ 0
Hokka	ido-Miyagi	35		35	35	1,083		93	34		934	
	ido-Miyagi	15		15	15	0		0			0	
	ido-Aichi	15		15	15	1,458		1,	218		978	
Hokka	ido-Aichi	2		4	6	240		48	30		720	
	Miyagi-Hiroshima	2	2	2	201	201	201		1	1	1	
	Miyagi-Fukuoka	6	6	6	0	0	0		0	0	0	
	Miyagi-Narita	2	2	2	0	0	0		0	0	0	
	Miyagi-Itami	16	16	16	1,093	613	133		5	3	1	
	Miyagi-Kansai	4	8	12	480	960	1,440)	4	8	12	
	Tokyo-Aichi	219	219	219	84,877	82,477	80,07	7	131	127	124	
	Aichi-Osaka	209	209	209	74,230	71,861	69,70)1	115	111	108	
	Aichi-Fukuoka	10	10	10	2,275	2,162	1,922) -	10	10	9	
	Aichi-Fukuoka	2	4	6	240	480	720		2	4	6	
	Aichi-Kumamoto	3	3	3	682	334	214		3	2	1	
	Aichi-Kumamoto	1	2	3	120	240	360		1	2	3	
	Aichi-Kagoshima	4	4	4	108	0	0		1	0	0	
	Aichi-Kagoshima	2	4	6	240	480	720		2	4	6	
	Aichi-Haneda	3	3	3	0	0	0		0	0	0	
	Aichi-Narita	4	4	4	0	0	0		0	0	0	
									Rail	FSC	LCC	

	8 * 6	Freque	ncies (P	rovided)		Passengers		Freque	ncies (R	esulting)	
	Link	Base	15%	25%	Base	15%	25%	Base	15%	25%	
	Osaka-Hiroshima	124	124	124	17,741	15,701	13,661	28	25	22	
	Hiroshima-Fukuoka	108	108	108	10,768	11,248	11,728	17	18	19	
	Hiroshima-Haneda	17	17	17	3,867	3,867	3,867	17	17	17	
	Hiroshima-Narita	1	1	1	0	0	0	0	0	0	
	<u>Hiroshima-Narita</u>	3	6	9	360	720	1,080	3	6	9	
Hiroshi	ima-Narita	1		1	1	0	0			0	
	Fukuoka-Haneda	71	71	71	16,152	16,152	16,152	71	71	71	
	Fukuoka-Narita	3	3	3	0	0	0	0	0	0	
	Fukuoka-Narita	9	18	27	1,080	2,160	3,240	9	18	27	
	Eukuoka-Itami	10	10	10	2,275	2,275	2,275	10	10	10. 1	
Fukuok	ka−Narita	3		3	3	0	0			0	
	Kumamoto-Kagoshima	48	48	48	5,702	5,601	5,601	23	23	23	
	Kumamoto-Haneda	19	19	19	2,814	2,574	2,334	13	12	11	
	Kumamoto-Narita	2	4	6	240	480	720	2	4	6	
	Kumamoto-Itami	9	9	9	1,449	1,329	1,209	7	6	6	
	Kumamoto-Kansai	1	2	3	120	240	360	1	2	2	
	Kagoshima-Haneda	23	23	23	3,063	2,823	2,583	14	13	12	
	Kagoshima-Narita	2	4	6	240	480	720	2	4	6	
	Kagoshima-Itami	13	13	13	1,415	904	184	7	4	1	
	Kagoshima-Kansai	4	8	12	480	960	1,440	4	8	12	
	Haneda-Itami	40	40	40	9,100	9,100	9,100	40	40	40	
	Haneda-Kansai	11	11	11	0	0	0	0	0	0	
	Narita-Itami	4	4	4	0	0	0	0	0	0	
	Narita-Kansai	8	16	24	960	1,920	2,880	8	16	24	
	-Itami	4		4	4	0	0			0	

Results

平均所要時間と 平均ユーザーコストの合計

	Travel Time Minutes 分	Users` Cost ¥
Base	161.76	16,220.28
15%	163.33	15,751.50
25%	165.30	15,299.09

Results

ネットワーク効率性 (¥/旅客キロ)

	Network Efficiency
	¥ / pax-km
Base	75.85
15%	73.93
25%	71.98

Results

市場シェア(旅客キロ)

%	Rail	FSC	LCC
Base	45.9	47.9	6.2
15%	44.2	43.5	12.3
25%	42.6	39.0	18.4

Results

市場シェア(旅客数)

%	Rail	FSC	LCC
Base	80.3	17.3	2.4
15%	79.5	15.9	4.6
25%	78.7	14.4	6.9

Results

CO2の総排出量

	CO₂ Emissions (Tons)
Base	8,169.95
15%	8,242.06
25%	8,301.59

Conclusion 結論

 A framework was proposed to measure impact of LCC growth on people, operators and network performance

- This framework can be used to analyze some policy measures (ex. slot distribution policy at congested airports)
- Results might be useful to see <u>negative impact</u> of LCC on FSC and HSR, and <u>positive impact</u> on people.
- Scope can be extended to cover conventional railway and intercity bus in future studies.
- This framework can also be applied easily to other countries

- More detailed analysis for larger network with real data
- Policy recommendations for slot distribution rule at congested airports

ご静聴ありがとうございました