「アジアの都市における長期的都市交通戦略ーハノイ市における交通行動分析と政策評価ー」

Long-term Urban Transport Strategies for Asian Cities

-Travel Behavior Analysis and Policy Evaluation in Hanoi City-

ブゥ アン トゥアン 研究員

1TPS Sympo 32nd 2012.11.27

本日の発表

- 1. 研究の背景
- 2. 研究の目的、構成および分析対象都市
- 3. 事例研究 **ハノイ市を対象として**
 - a. パーソントリップ調査の目的、概要
 - b. 実交通行動 (Revealed preference: RP) 分析
 - c. 政策シナリオと潜在交通行動(Stated preference: SP) 分析
- 4. 結論

アジア大都市に共通する特徴

- (Morichi, 2005)
 - □急速な経済成長
 - □急速な都市化
 - □高密都市
 - □首都への一極集中

交通需要が急速かつ 広範に増大

都市交通指標: 1990年から2010年への変化

指標	年	ハノイ	ジャカルタ	バンコク	広州	ソウル	台北	東京
GRP per capita	1990	719	1,837	6,322	1,110	7,627	13,243	64,697
(2005US\$, PPP)	2010 ^b	2,192	5,197	8,419	10,221	22,112	25,822	58,214
人口	1990	4.4	8.3	5.9	5.9	10.6	5.8	11.6
(百万人)	2010 ^a	6.6	9.6	8.3	8.0	10.5	6.5	13.0
人口密度	1990	48	140	35	••	175	100	56
(人/ha)	2010 ^a	85	144	38	145	173	96	62

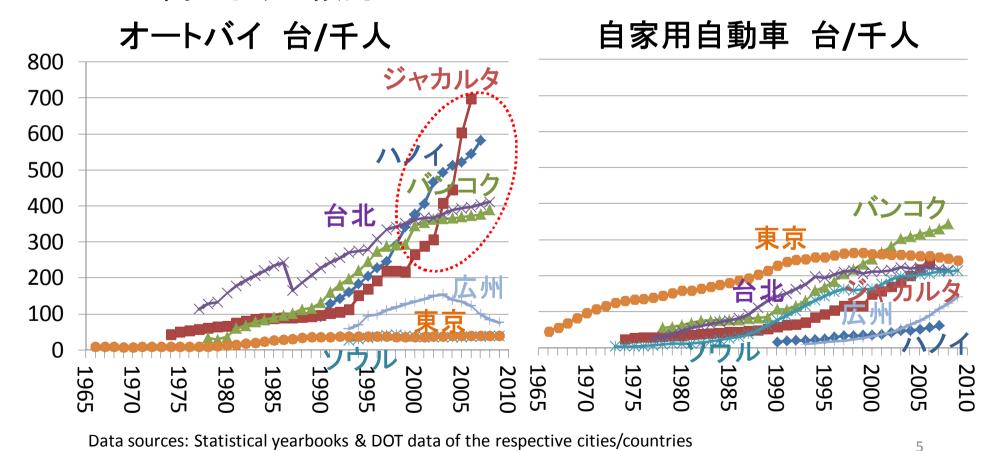
Data sources: Statistical yearbooks & DOT data of the respective cities/countries

アジア成長都市にみられる固有の問題

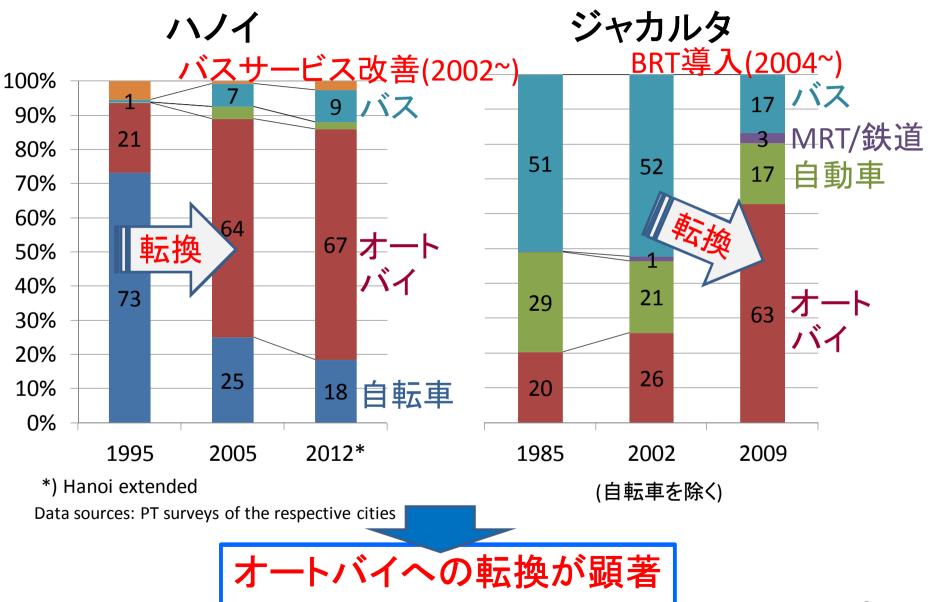
- □ 道路インフラ整備の不足
- □公共交通サービスの不足
- □オートバイ保有・利用の急増(低所得者層)

オートバイと共に自動車保有・利用が増加(高所得者層)

□交通事故、渋滞の増加


都市交通指標: 1990年から2010年への変化(続き)

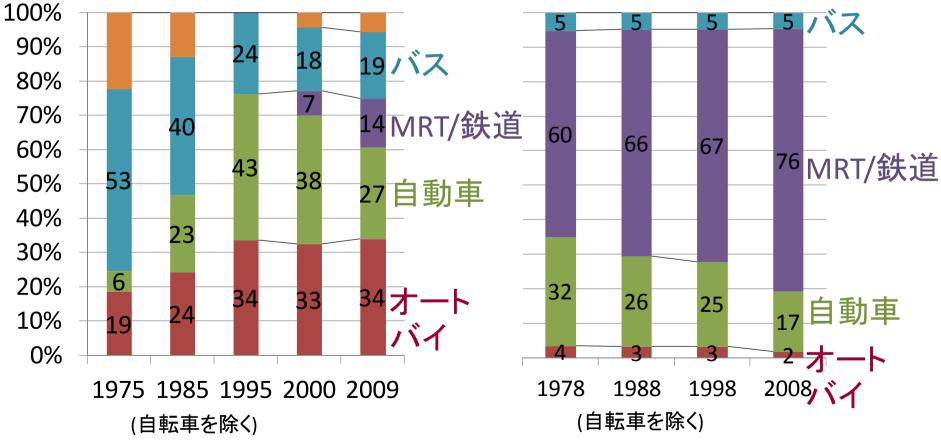
指標	年	ハノイ	ジャカルタ	バンコク	広州	ソウル	台北	東京
道路密度	1990°	3.00		2.43	2.61			10.92
(km/km2)	2010 ^d	3.51	9.65	2.60	6.41	13.39	5.67	11.56
バス台数	1990 ^g	73		1,477	999	802	1,038	
(台/百万人)	2010 ^h	273	1,405	1,194	1,314	889	1,550	
BRT延長	1990 ⁱ	0	0	0	0		4.2	••
(km/百万人)	2010 ^j	0	13.4	2.8	4.0	15.7	5.2	
鉄道延長	1990 ^k	0		4.2	2.8	27.5	4.0	66.0
(km/百万人)	2010 ^l	0	4.9	7.4	29.9	47.1	29.0	85.4


Data sources: Statistical yearbooks & DOT data of the respective countries

オートバイ・自動車保有の傾向

- ▶ 低所得層の都市においてオート > 自動車保有が急増 バイ保有が増加
 - (バンコク、ジャカルタ)
- ▶ 高所得層の都市であっても台北 では高止まりの傾向

輸送機関分担率の推移


輸送機関分担率の推移(続き)

台北

→ 公共交通導入の遅れ(MRT)→オートバイ分担率が高止まり

東京

▶ 長期・継続的な鉄道整備 まり →公共交通分担率が高い

Data sources: PT surveys of the respective cities

公共交通整備への投資と挑戦

- アジア成長都市では速急に公共交通を整備する必要がある
- 意欲的にMRT整備計画が打ち出されている

	ハノイ	ジャカルタ	バンコク	広州	台北
BRT system	2015	● 2004	2010	• ₂₀₁₀	1996
MRT system	2015	2016	• ₂₀₀₄	• ₁₉₉₇	• ₁₉₉₆
	Note: ●	供用済∂	ب	計画中	

高いオートバイ分担率の問題を解決できるか?

- ▶ 交通行動変化の不確かさ→ 効果的な投資へのリスク
- ➤ 交通行動を詳細に把握すること → MRT整備計画への支援

ハノイ公共交通整備計画

Sources: JICA HAIDEP (2005) & TRAMOC (2012)

従来型バス網

MRT/BRT network 2030

	2012	2020	Ņ
路線数	77 —	→ 94	\bigwedge
総延長(km)	1,525		
平均速度(km/h)	10-12		jo

IT. Tram Trôi man tây Hồ

		路線数	延長 (km)	N A	1
	MRT	8	240		1
	BRT	5	160	on Soc Son	
23/00	TT.Tây	Đẳng	TT.Chi Đông TT Quang Min		

> 多くのオートバイ・自動車利用者を転換させる目標

- MRT/BRT導入により多くのオートバイ・自動車利用者は 公共交通に転換するか?
- MRT/BRT導入を補完する政策は何か?
- 長期の人々の交通行動が十分明らかにされていない

本日の発表

- 1. 研究の背景
- 2. 研究の目的、構成および分析対象都市
- 3. 事例研究 ハノイ市を対象として
 - a. パーソントリップ調査の目的、概要
 - b. 実交通行動 (Revealed preference: RP) 分析
 - c. 政策シナリオと潜在交通行動(Stated preference: SP) 分析
- 4. 結論

研究の目的

- ▶ 長期にわたる人々の交通行動変化を把握する

 - 社会経済的な要因■ インフラ・サービスの変化 に着目
- ▶ 種々の代替案の中から効果的な政策を提言する

分析対象都市

- ❖ ハノイ、ジャカルタ、バンコク、広州 (成長都市)
- ❖ 台北、ソウル、東京 (先進都市)

研究の構成

データ収集 トレンドの概観 •Infra/PT services 時系列 •MC & car ownership (マクロ) Across Modal splits Population, income cities Policy responses •Infra & PT services Mode performances Private vehicles Modal splits 検討される政策 Policies/regulations 想定シナリオ Infra/services (Bus/BRT/MRT) Regulations (MC/Car) (e.g., Hanoi) PT調査 Integration with PT (P&R) (ミクロ) Household 交通行動分析 政策分析及び attributes •MC & car ownership Across pop. •Individual attributes 提言 Trip rate/distance segments& Trip attributes Mode choice cities Attitudes, beliefs

ハノイ市の事例

本日の発表

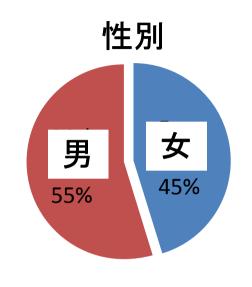
- 1. 研究の背景
- 2. 研究の目的、構成および分析対象都市
- 3. 事例研究 ーハノイ市を対象として
 - a. パーソントリップ調査の目的、概要
 - b. 実交通行動 (Revealed preference: RP) 分析
 - c. 政策シナリオと潜在交通行動(Stated preference: SP) 分析
- 4. 結論

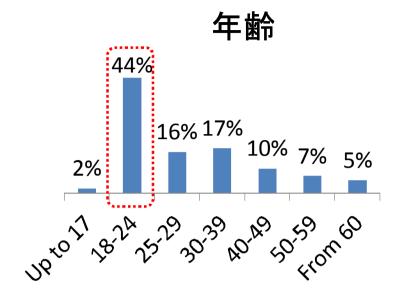
ハノイ市におけるパーソントリップ調査

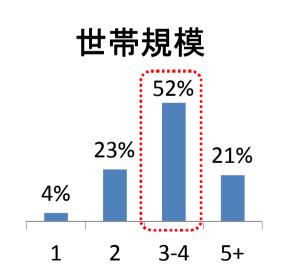
目的

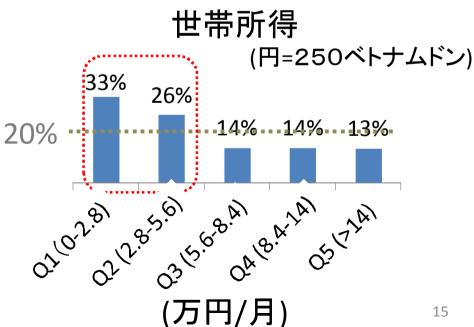
- ▶ 現状の発生交通、機関分担とその要因を把握?
- ▶ 提案する政策シナリオに人々はどのように反応するか?
- ▶ 政策提言

調査実施期間 2012年5月

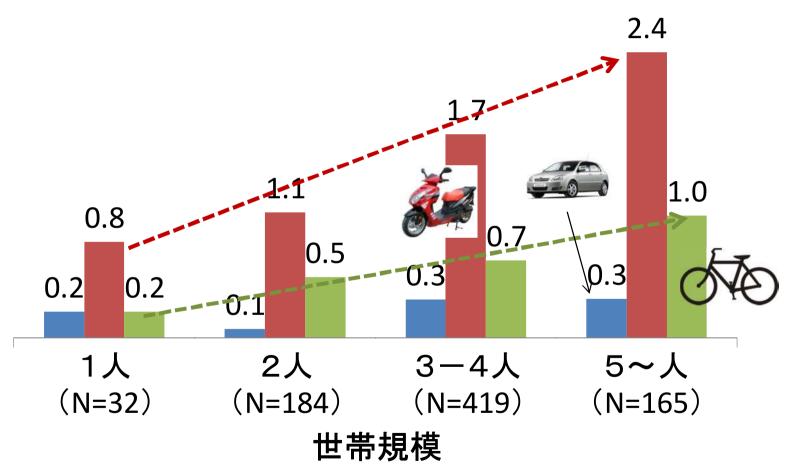

合計: 800サンプル {オートバイ利用者300

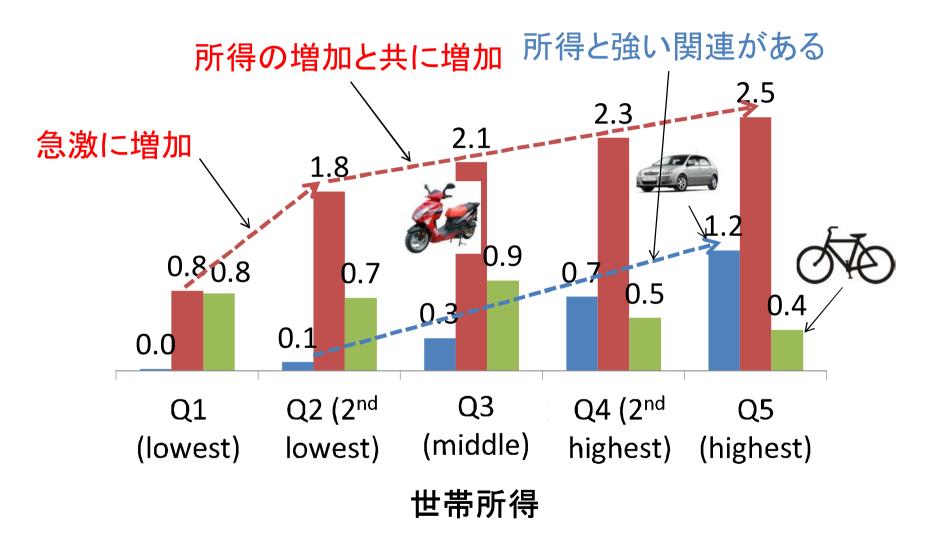

バス利用者 200


自転車利用者 150


自動車利用者 150}

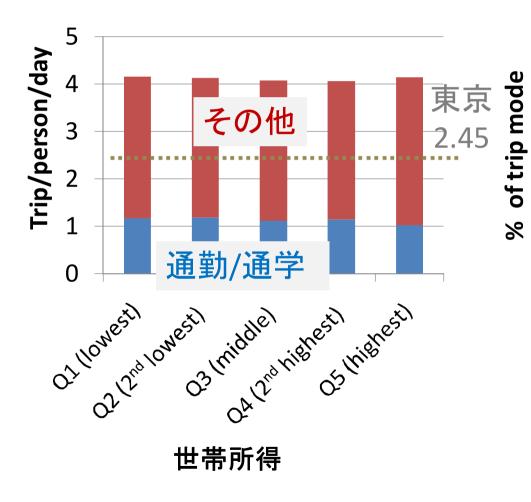
回答者の個人属性



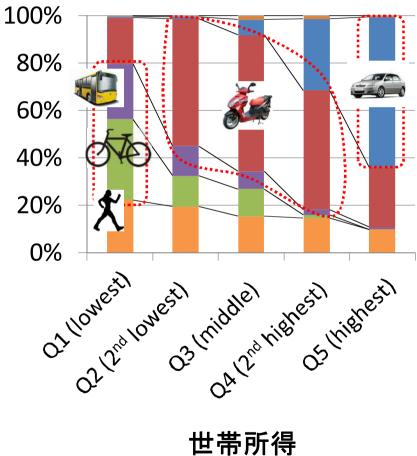


世帯規模別の平均車両保有台数

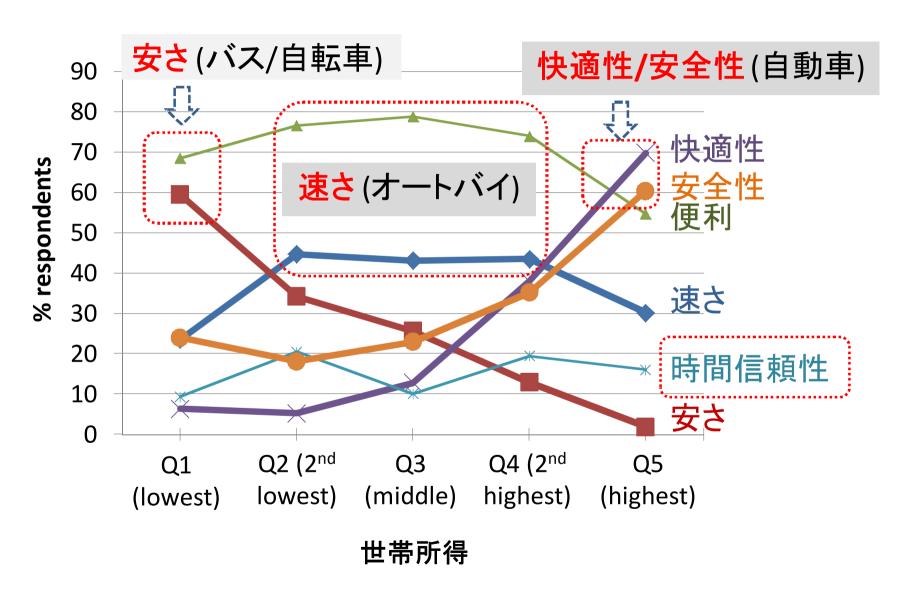
▶ 世帯規模が大きくなるほどオートバイ、自転車保有台数が増える



世帯収入別の平均車両保有台数

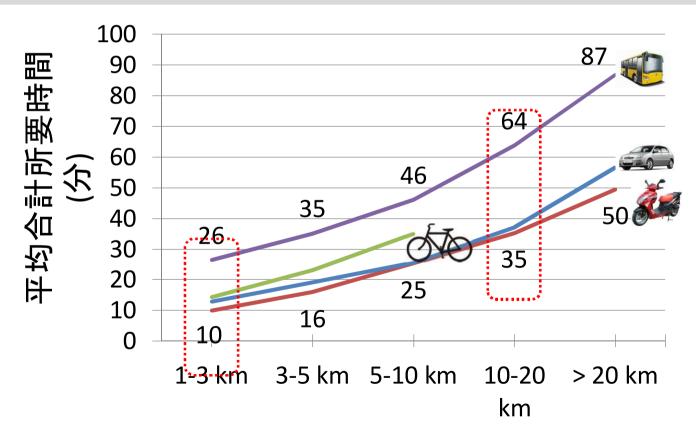

トリップ数

▶ 所得による差はみられない

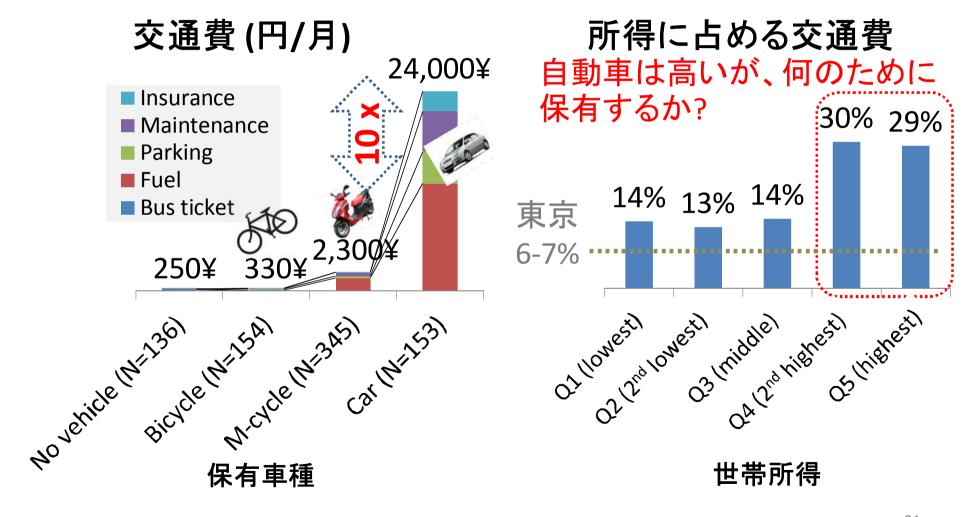


利用交通手段

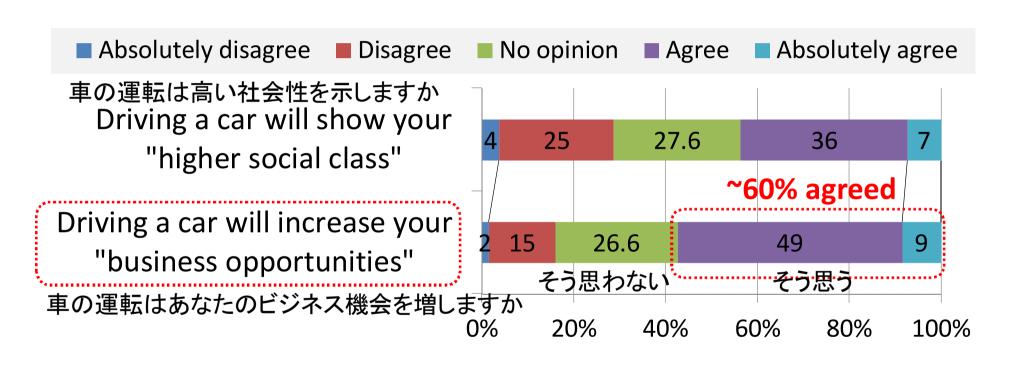
▶ 所得により交通手段の 選好が異なる


交通手段選択とその理由 (RP: 実交通行動)

距離・交通手段別の所要時間


- ▶ バスが最も遅く、オートバイが最も速い
- ➤ 自転車の方がバスより速い(5km以内)

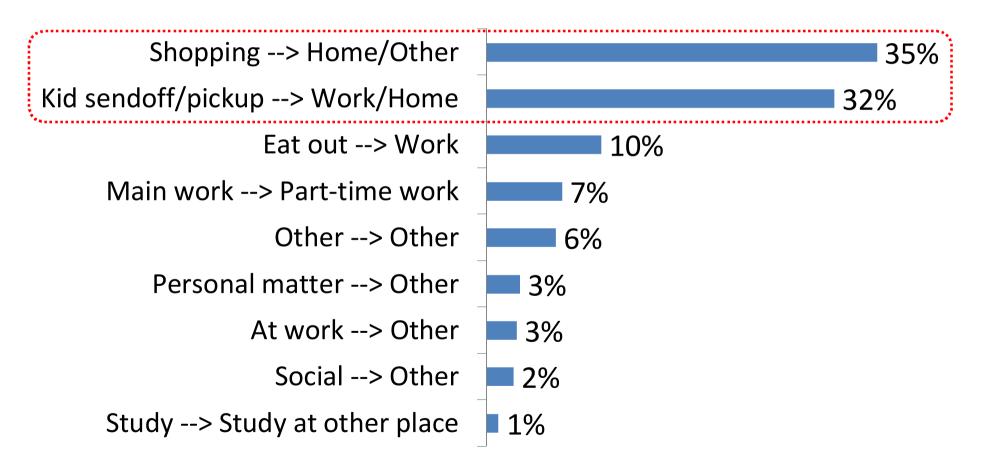
合計所要時間 = {乗車時間} + {アクセス・イグレス、待ち時間}


月間交通費(車両購入費を除く)

▶ 自動車が極端に高い (快適性、安全性のため)

自動車保有の価値に関する意識

■ 自動車利用の40%が業務目的



▶「ビジネス機会投資」としての自動車
→ 自動車利用者の転換は困難?

トリップチェイン

41%の回答者が連鎖的に移動している

▶ 日常利用では利便性、機動性を備えたオートバイが有利

トリップチェインを考慮した土地利用・施設立地政策

- 現在、主要な施設(学校や商業施設)は散在している
- オートバイの機動性は現在の施設立地形態に適合している
- MRT整備だけではトリップチェインに対応できない可能性がある
 - → オートバイ利用者をMRTに転換させるのは困難 MRT整備に加えて土地利用・施設立地形態の見直しが必要
 - 例) TOD*/駐車規制/公共施設の立地(学校, 商業施設, 病院等)

*TOD(Transit Oriented Development): 公共交通指向型開発

まとめ (3.b)

- 高所得層になると自動車保有が増えるものの、オートバイも保有しつづける傾向がある
- 所得が増えるにつれて、人々は早く、安全で快適な 交通手段を選好するようになる
- オートバイ・自動車利用者を公共交通に転換させる のは困難...
 - 日常のトリップチェインに利便性と機動性を備えたオートバイが利用されていることが明らかになった
 - 自動車は「ビジネス機会投資」と認識されている

本日の発表

- 1. 研究の背景
- 2. 研究の目的、構成および分析対象都市
- 3. 事例研究 ーハノイ市を対象として
 - a. パーソントリップ調査の目的、概要
 - b. 実交通行動 (Revealed preference: RP) 分析
 - c. 政策シナリオと潜在交通行動(Stated preference: SP) 分析
- 4. 結論

SP(利用選好)調査で提示する政策シナリオ

交通 手段	変数		シナリオ1] BRT only"		[シナリオ2] "BRT+ Parking"	シナリオ3] "MRT+ Parking"	シナリオ4] "MRT+ 2Parking"
M-cycle	駐車料金(円)	(D-12 (now)		32	32	48
Car	駐車料金(円)	0	-120 (now)	200	200	300
BRT/	乗車時間		75% X		75% X	75% X	75% X
imprved Bus	アクセス・イグレス 待ち時間		50% Y		50% Y	50% Y	50% Y
	費用 (円)		20		20	20	32
MRT	乗車時間					50% X	50% x
	アクセス・イグレス 待ち時間					25% Y	25% y
	費用 (円)					40	60

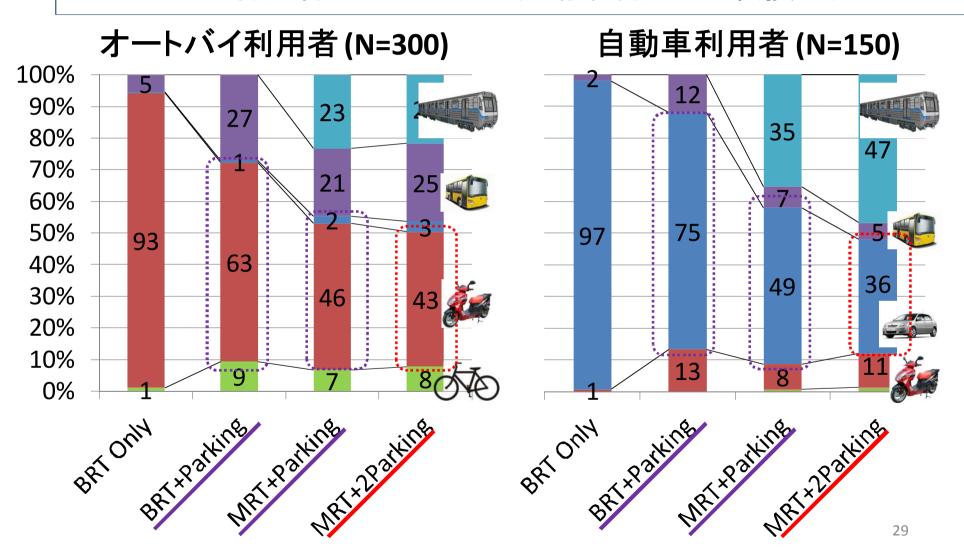
注記: X = 現状のバス乗車時間

Y=現状のアクセス·待ち時間

自転車の乗車時間、駐車料金は固定

SP調査の質問

例)[シナリオ4] "MRT + 2Parking"

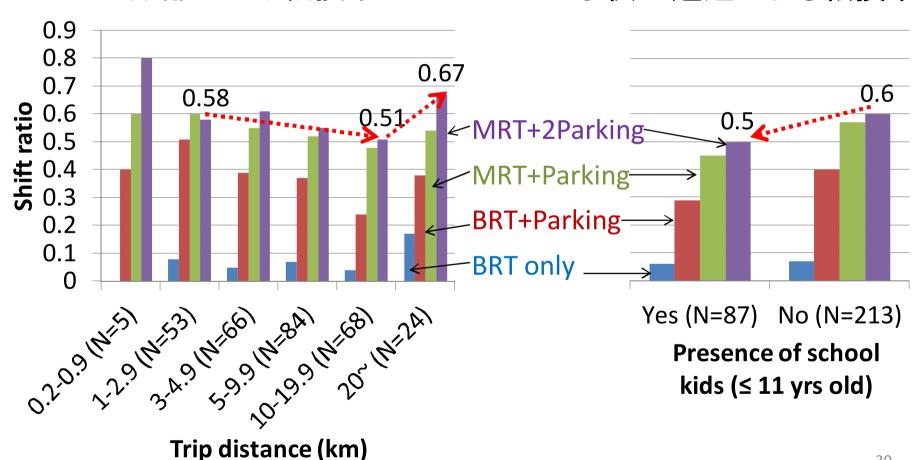

• いまあなたが行ったトリップで、各交通手段のサービスレベルが 以下の条件であった場合、どの手段を選択しますか

For the trip you just made, please indicate your preferred mode under the following conditions (you can't choose a vehicle that your household doesn't have now)

M-cycle	BRT	BRT MRT		Bicycle
	Access/wait time =	Access/wait time =		
	[50% current Bus]	[25% current Bus]		
In-veh time = [as now]	In-veh time = [75% current Bus]	In-veh time = [50% current Bus]	In-veh time = [as now]	Bicycling time = [as now]
Parking = 48	Fare = 32	Fare = 60	Parking = 300	Parking =
(¥ <u>/tim</u> e)	(¥ <u>/lin</u> e)	(¥/line)	(¥/ <u>tim</u> e)	[as now]

政策シナリオ別の交通手段選択 (SP)

- ➤ 自動車利用者はMRTのみ、オートバイ利用者はBRT・MRTを選好
- ▶ 35-40%の利用者はオートバイ・自動車利用から転換しない


オートバイからの転換率

▶ 距離と転換率には相関がない (通説とは逆の結果!)

距離による転換率

▶ 子供の送迎が転換を 妨げる

子供の送迎による転換率

交通手段選択モデル (SP/RPデータを用いたMNLモデル)

• 交通手段 i, 個人 n の効用関数:

$$\begin{bmatrix} U_{ni}^{RP} = \theta X_{ni}^{RP} + \alpha Y_{ni}^{RP} + \varepsilon_{ni} \\ U_{ni}^{SP} = \mu(\theta X_{ni}^{SP} + \phi Z_{ni}^{SP} + \eta_{ni}) \end{bmatrix}$$

where

 α , ϕ , θ = parameters to be estimated

 μ = unknown *scale parameter*

 $X_{ni}^{RP}X_{ni}^{SP}$ = individual/alternative attributes in RP/SP utility functions

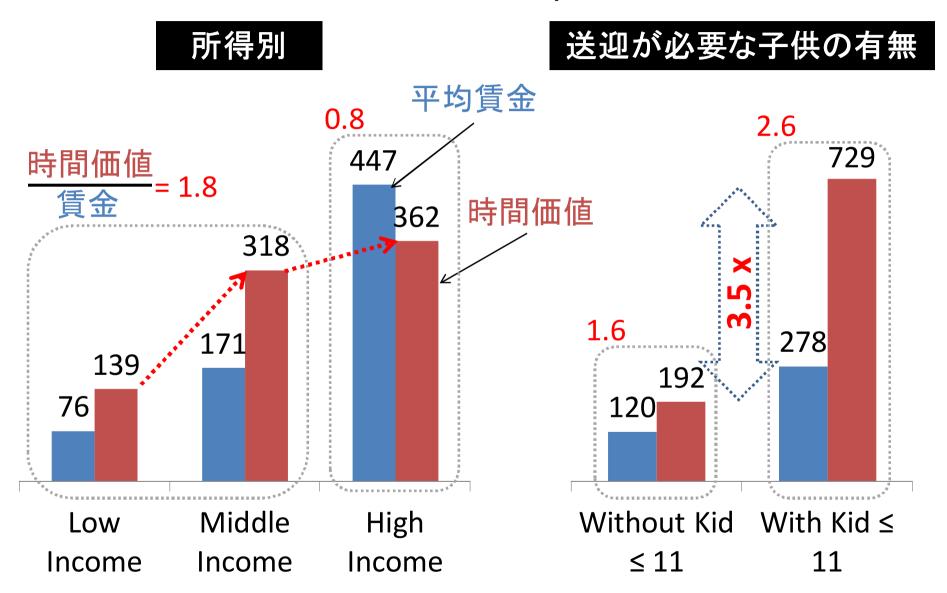
 $Y_{ni}^{RP} Z_{ni}^{SP} = \text{RP/SP-specific attributes}$

 $\mathcal{E}_{ni} \eta_{ni}$ = error terms (Gumbel distribution)

• 選択確率:

$$P_{ni}^{RP} = \frac{\exp(\theta X_{ni}^{RP} + \alpha Y_{ni}^{RP})}{\sum_{J} \exp(\theta X_{nj}^{RP} + \alpha Y_{nj}^{RP})}$$

$$P_{ni}^{SP} = \frac{\exp[\mu(\theta X_{ni}^{SP} + \phi Z_{ni}^{SP})]}{\sum_{J} \exp[\mu(\theta X_{nj}^{SP} + \phi Z_{nj}^{SP})]}$$


推定結果

Model	All ca	ises	Low Inc	come	Middle I	ncome	High In	come	
Variable	para	t-test	para	t-test	para	t-test	para	t-test	
Travel Cost by Income									
(vnd per mil. vnd)	-2.53E-04	-9.84	-2.84E-04	-8.51	-3.31E-04	-4.53	-2.20E-04	-3.15	
Total travel time (min.)	-0.0521	-10.74	-0.0562	-9.42	-0.0666	-5.59	-0.0193	-1.23	
Personal income (mil. vnd)									
Car Alt.	0.0899	3.34					0.114	3.26	
BRT Alt.	-0.193	-5.80	-0.207	-3.54	-0.149	-2.93	-0.109	-1.88	
MRT Alt.					-0.0913	-1.91			
Bicycle Alt.	-0.478	-6.95	-0.558	-5.89	-0.445	-3.59	-1.03	-1.98	
Car ownership (per adult)									
Car Alt.					3.14	2.85			
MC ownership (per adult)									
BRT Alt.	-2.36	-9.72	-2.3	-7.51	-2.81	-5.43			
MRT Alt.	-1.51	-5.81	-2.09	-5.06			-1.37	-1.90	
Bicycle Alt.	-1.01	-3.63	-1.33	-3.89					
BC ownership (per adult)									
BRT Alt.					2.08	3.45	1.91	1.80	
MRT Alt.					1.89	2.67	5.72	3.24	
Bicycle Alt.	1.45	4.27	1.47	3.70					
Destination zone									
BRT Alt.	0.478	5.66	0.531	4.81	0.719	4.09	-0.999	-2.50	
Scale parameter	0.535	11.22	0.492	10.44	0.753	2.07	0.589	3.39	
Value of time (¥/hour)	304		139		318		362		
Initial log-likelihood	-3873.47		-2474.41		-727.22		-671.84		
Final log-likelihood	-3025.58		-2040.84		-570.25		-337.56		
Rho-square	0.23		0.184		0.331		0.412		
Adjusted rho-square	0.226		0.178		0.311		0.383		
Sample size	3922		2438		770		714		

交通手段選択への有意な要因

Model	All cases	Low	Middle	High
Variable		Income	Income	Income
Travel Cost by Income		•		
Total travel time				
Personal income				
Car Alt.				
BRT Alt.				
MRT Alt.				
Bicycle Alt.				
Car per adult				
Car Alt.				
M-cycle per adult				
BRT Alt.				
MRT Alt.				
Bicycle Alt.				
Bicycle per adult				
BRT Alt.				
MRT Alt.	_	_	•	
Bicycle Alt.	•			33

時間価値(円/時)

まとめ (3.c)

- MRTが導入されない限り、バス・BRT整備だけではオートバイ・自動車利用者の公共交通転換を促さない
- MRTを整備しても多くの人がオートバイ・自動車利用を 選び続ける
 - オートバイ利用者のトリップチェイン
 - 自動車保有によりビジネス機会が高まる
- オートバイ保有世帯は長期的にMRT・BRTへの転換を 減少させる可能性
- 時間価値は個人属性(所得、送迎する子供の有無)により大きく変わる可能性

本日の発表

- 1. 研究の背景
- 2. 研究の目的、構成および分析対象都市
- 3. 事例研究 **ハノイ市を対象として**
 - a. パーソントリップ調査の目的、概要
 - b. 実交通行動 (Revealed preference: RP) 分析
 - c. 政策シナリオと潜在交通行動(Stated preference: SP) 分析

4. 結論

結論

- ➤ 長期的には、アジアの諸都市ではオートバイ・自動車利用者を転換させるためにMRT整備への投資が必要になる
- ➤ MRTへの転換にはオートバイ・自動車利用者の強い 抵抗がある → MRTを補完する政策の必要性
- ▶ (1) 土地利用・施設立地計画との連携により、MRT 計画新駅周辺にトリップチェインと関連のある施設を 立地させる

結論 (続き)

- ▶(2)オートバイ利用を制限する強い規制
 - フィーダー輸送としてのオートバイ (Taipei/Bangkok)
 - ➤ 高速・幹線道路での通行禁止 (Taipei/Bangkok)
 - ➤ 都市内エリアの段階的走行制限 (Guangzhou)
- ▶ (3) 初期段階で自動車需要を調整する手法
 - ▶駐車場規制
 - ➤ MRTの駅で業務打合せができる便利で質の高い場所の 提供 (例えばスターバックス)
- ➤他の諸都市でもMRTを整備するにあたり、長期的な 交通行動分析・調査が必要

Thank you