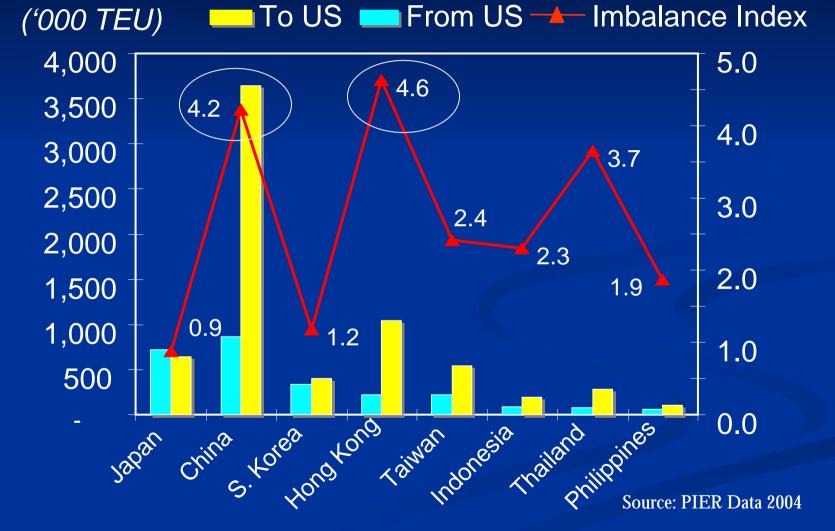
15th ITPS Symposium, Tokyo

Trade Imbalance and the Rationalized Movement of Empty Containers

LE, Dam Hanh Former ITPS Researcher Viterbi School of Engineering University of Southern California

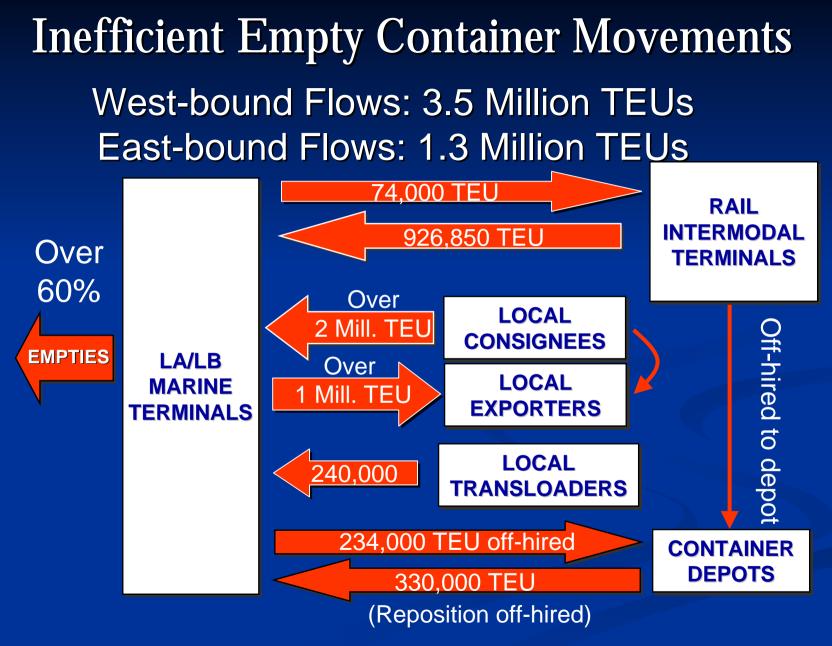

Presentation Outline

- Trade Imbalance and the Local Impact of Empty Container Problems
- Analysis of Current Empty Container Movements and Logistics Practices
- Solutions to Rationalizing the Movement of Empty Containers—Local/Regional System Improvement
- Conclusions

Trade Imbalance and the Local Impact of Empty Container Problems

" The first cousin of increased empty containers is local congestion and air quality problems..."

Trans-Pacific Trade Imbalance (TEU) To/From US West Coast in 2003

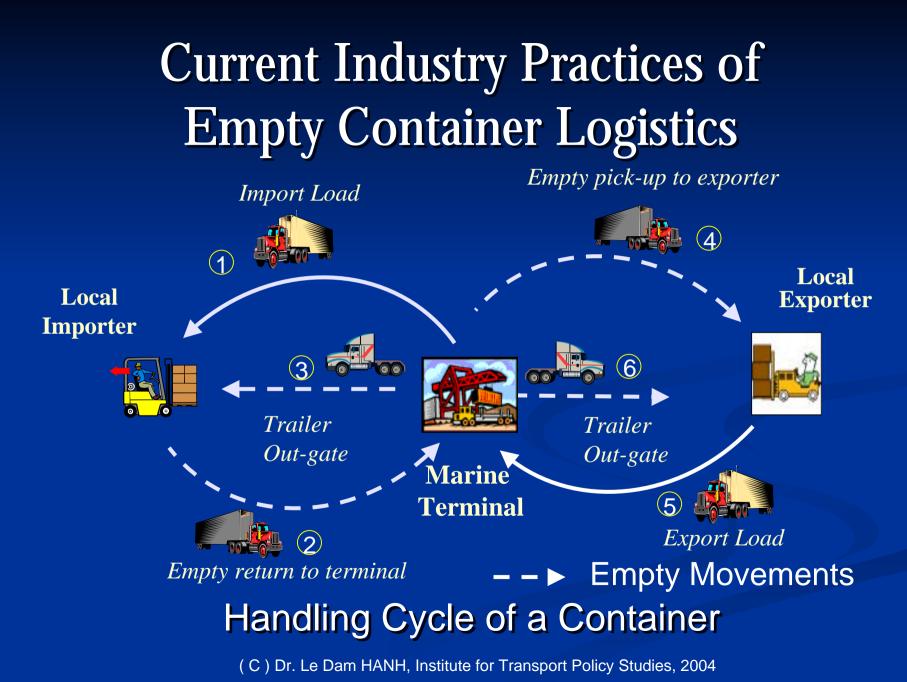


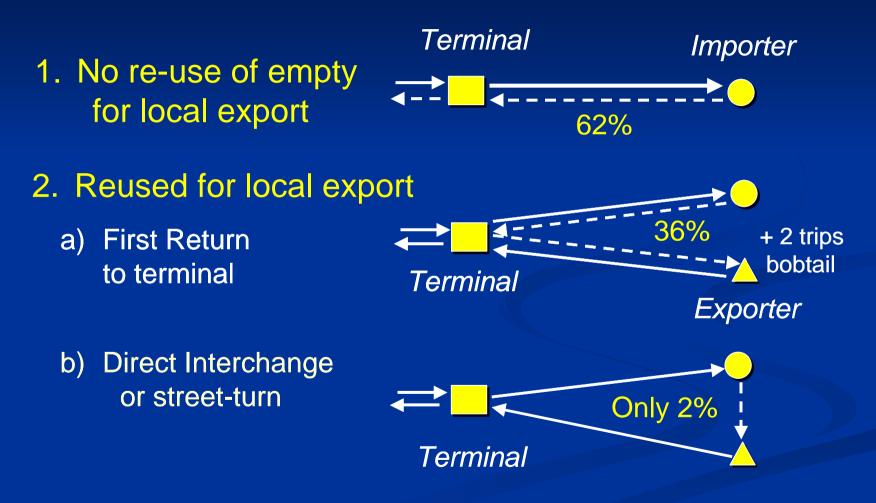
Dynamics of International Trade and Empty Container Surplus/Deficit Regions

Tran-Pacific Trade Volume (TEU) by Country in 2003

Trading Partner	To US	From US	Empty Surplus/ Deficit Region
Japan	638,303	723,168	84,865
China (HK)	4,690,935	1,088,520	-3,602,415
(China only)	3,646,228	862,662	-2,783,566
Korea	397,448	336,671	-60,777
Taiwan	545,507	225,483	-320,024
Thailand	288,655	78,966	-209,318
Indonesia	198,527	86,209	-112,529
Total	6,759,375	2,539,017	-4,220,358

Source: Created from PIER Data


Implications of Container Truck Traffic - Congestion and Air Quality -


During Port Lockout (2002) Nor

Normal Day

II. Analysis of Current Empty Container Movement and Logistics Practices

Typical Movement Patterns of Empty Containers

Factors Limiting Container Re-use and Direct Interchange

- Trade imbalance
- Import/export timing or location mismatch
- Type mismatch (wrong size, wrong type, or wrong chassis)
- Ownership mismatch (wrong steamship line)
- Lack of steamship line incentives
- Institutional barriers

Structural Issues Limits Direct Interchange of Empty Containers

Container Ownership Issue

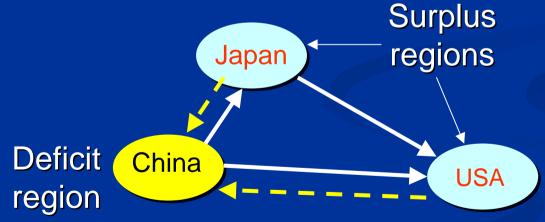
- 50% to 80% of containers are owned by ocean carriers
- "Slim inventory" is key in management strategy
- Maintain total control over equipments is important
- Carriers reluctant to share containers to other carriers

Container Liability Issue

- Specific liability agreements with a trucking firm
- Problem of allocating damage responsibility at transfer

Operational Issues (continue)

The "storefront" character of empty containers

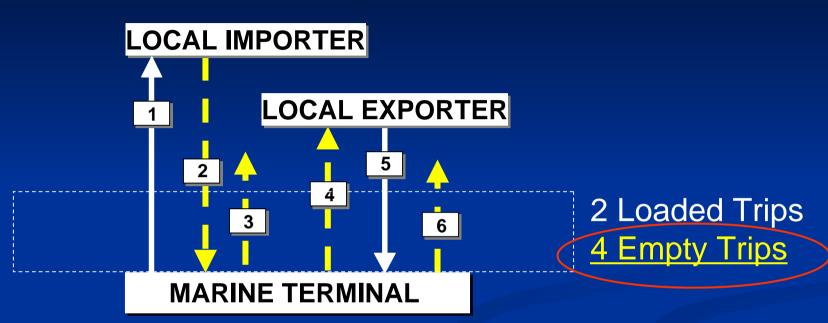

- From Equipment in nature to Service in character
- Availability of empty containers at a particular place and time become commercially valuable
- Differentiating a carrier from other competitors

Carrier reluctant to cooperate with other carriers to address the empty container problem.

Efficient Global Logistics Management of Container Inventory

Reposition Costs vs. Service Opportunities Trade-Off

Regional inefficient movements <u>and</u> the efficient performance of the global container inventory operations

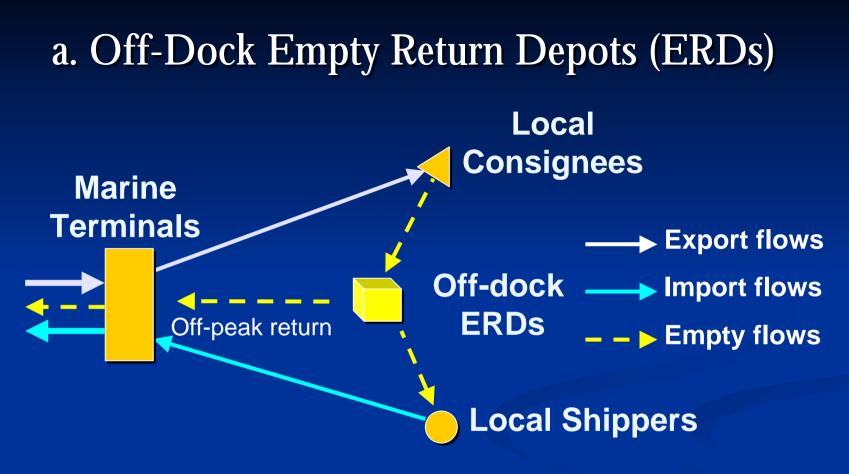


Reposition empty containers to Asia as soon as possible

Ш.

The Rationalizing Movement of Empty Containers: Regional System Improvement

Excessive Empty Trips Generation



- 1. Loaded import container move to importer
- 2. Empty container return to terminal
- 3. Trailer out-gate (to next assignment)
- 4. Empty container move from terminal to exporter
- 5. Loaded export container move to terminal
- 6. Trailer out-gate (to next assignment)

Rationalization of Empty Container Movements:

- Potential Regional System Improvements

 a. Off-Dock Empty Return Depots
 b. Direct Interchange to Reuse Empty Containers
 - c. Internet Systems: Virtual Container Yards
 - d. Depot Direct Off-hire of Empty Leased Containers
 - e. Gray Box-Neutral containers pool
 - g. Collapsible Containers

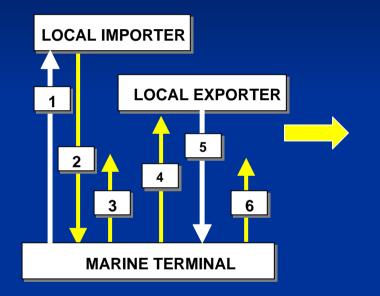
 Serving as a buffer storage or neutral points for interchanges and re-use of empty container.

Diverting truck trip to off-peak period

Conflicting Interest in ERDs

Local Community: Strongly support

- Reduce truck trips, VMT and congestion
- Improved air quality, noise and safety
- Cities willing to accept new ERD facility?


Ocean Carriers:


- It complicates carrier's inventory control
- Less efficient given the increased trade imbalance
- Increase carrier's operation and investment costs

Drayage/trucking firms:

- Effective way to avoid congestion at terminal gate
- Reduce a trip time, increase productivity

b. Empty Container Re-use: Direct Interchange or "Street Turn" Current Empty Return Empty Reuse/Street Turn

- 2. Empty return to terminal
- 3. Bobtail out-gate (to next assignment)
- 4. Empty container move to exporter
- 5. Loaded export container move to terminal
- 6. Out-gate (to next assignment)

LOCAL IMPORTER

- 1. Loaded import container move to importer
- 2. Empty cross-town to exporter
- 3. Loaded export container move to terminal
- 4. Trailer out-gate (to the next assignment)

Source: Empty Container Study (2001)

Empty Flows Estimate: Base Case—LB/LA Ports

TEUs		2000	2010	2020
Port Inbound/Eastbound		1,324,476	2,738,344	5,027,971
Via Rail		22,169	80,413	170,494
Via Truck		1,302,306	2,657,931	4,857,476
Port Outbound/Westbound		3,568,312	6,367,713	14,440,698
Via Rail		278,128	501,602	1,084,536
Via Truck		3,290,183	5,866,112	13,356,161
Cross-Town Truck	Factor	149,184	268,159	602,663
Local Off-Hires to Depots	3%	80,577	146,796	323,278
IM Off-Hires to Depots	3%	19,469	31,738	81,601
Reused empties for exports	2%	49,138	89,624	197,784
Grand Total		5,041,972	9,374,216	20,071,332

Total Empty Trips Reduction Impact

	2000	2010	2020
Base Case	5,041,972	9,375,000	20,100,000
Tier I 5% Reuse	4,955,734	9,083,000	19,428,000
Trips Saved	1,600,000	292,000	644,000
Tier II 10% Reuse	4,616,000	8,596,000	18,355,000
Trips Saved	430,000	778,000	1,717,000
Depot-Direct 10%	4,890,000	8,958,000	19,127,000
Trips Saved	234,000	417,000	945,000
Combined Scenario	4,400,000	8,205,000	17,465,000
Total Trips Saved	646,000	1,170,000	2,607,000

Average Trip Length by Trip Type

Trip Type	Average Miles		
Eastbound			
Off-Dock Intermodal	14		
Local for Export Loading	15		
SSL Off-Hires to Depots	4		
Westbound			
Off-Dock Intermodal	14		
Local for Import Loading	15		
Local from WB Domestic Loads	30		
Repo Off-Hires from Depots	4		
Local Empties form Transloads	10		
Bobtails	15		
Cross-Town			
Local Off-Hires to Depots	11		
IM Off-Hires to Depots	10		
Re-used empty for Export	15		

Estimated Total VMT Impacts

Reduce Annual VMT by over 7 million in 2010

	2000	2010	2020
Base Case	34,385,909	64,040,254	136,322,325
Tier I - 5% Reuse	33,188,403	61,852,813	131,494,795
VMT Reduction	1,197,505	2,187,441	4,827,530
Tier II - 10% Reuse	31,192,561	58,207,077	123,448,912
VMT Reduction	3,193,347	5,833,177	12,873,414
Depot-Direct 10%	33,376,434	62,238,830	132,237,056
VMT Reduction	1,009,474	1,801,424	4,085,269
Combined Scenario	30,242,584	56,514,171	119,603,121
VMT Reduction	4,143,324	7,526,083	16,719,205

Estimated Emissions Impacts

	2000		2020	
Scenario & Emission Type	Annual Tons	Peak Day Tons	Annual Tons	Peak Day Tons
Base Case				
Carbon Monoxide	497	2.14	1,970	8.48
Total Organic Gases	113	0.49	449	1.93
Reactive Organic Gases	111	0.48	438	1.89
Oxides of Nitrogen	420	1.81	1,666	7.17
Exhaust Particulates	39	0.17	155	0.67
Combined Scenario				
Carbon Monoxide (CO)	437	1.88	1,728	7.44
Reduction	60	0.26	242	1.04
Total Organic Gases	100	0.43	394	1.7
Reduction	14	0.6	55	0.24
Reactive Organic Gases	97	0.42	385	1.66
Reduction	13	0.06	54	0.23
Oxides of Nitrogen (Nox)	370	1.59	1,462	<u>6.29</u>
Reduction	51	0.22	204	0.88
Exhaust Particulates	34	0.15	136	0.58
Reduction	5	0.02	19	0.08

Institutional Issues that Limit Direct Interchange

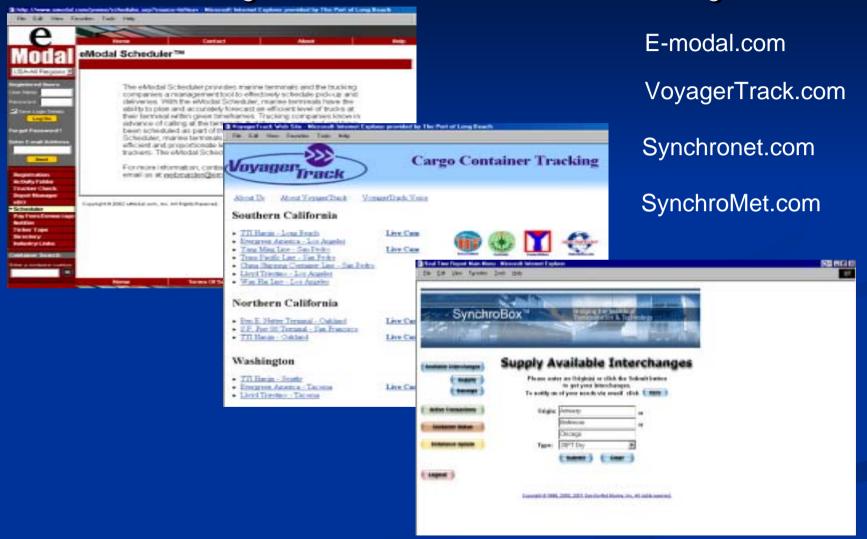
- Carrier's contracts that do not allow interchange or make the first trucker liable
- Need for inspection and paper work when interchange
- Lack of a standard or consistent procedure for trucker interchange
- Difficulty of tracking per diem and repair charges
- Limited free-time (3-5 days)

What Do We Need to Increase the Direct Interchange of Empty

- Carrier's participation and cooperation in sharing container status information
- Availability of accurate, real-time information is a key to maximizing container re-use

 Carrier's authorization and standard liability transfer procedure and documentations

Internet Based Systems: "Virtual Container Yard" (VCY)


c. Virtual Container Yard Using Internet Systems

- What is the virtual container yard ?
- Common platform for posting useful information about containers for potential reuse
- Facilitate re-use decisions and necessary interchange procedures and documentation electronically

Virtual CY Information Needs

Info Source	Container Info	Chassis Info
Ocean Carrier	Box Serial No.	Chassis Serial No.
	Box Type & Specs	Chassis Type
	Reuse Limits	Reuse Limits
	Return Location	Return Location
	Free Time/Per	Free Time/Per Diem
Trucker	Location	Location
	Time/Date when Available	Time/Date when Available

Third Party Provider Internet Systems

SynchroMet.com—Virtual CY Service Port of Oakland Community

Provides Motor Carriers with the ability to:

- Communicate street inventory or equipment needs
- Facilitate a street turn transaction with Ocean Carrier approval
- Generate an EIR and transfer liability for the equipment
- Access empty equipment direct from local ramps and depots

Provides Ocean Carriers with the ability to:

- Authorize individual street turn requests on-line
- Dispatch equipment from local ramps and depots
- Incorporate required business rules and special terms
- Automate the confirmation process via EDI

Technology to Benefit Everyone

Who would benefit and how?

- Truckers would avoid non-revenue return moves and terminal gate congestion, and improve driver productivity
- Ocean carriers would improve equipment utilization and reduce long-run trucking costs
- Export shippers would receive improved equipment supply
- Local community and public would benefit through reduced total truck VMT, emissions, congestion, and increased safety

Conclusions (1)

Ocean carriers are willing to tolerate the regional inefficient movement of empty containers as a means of optimizing the overall performance of their global inventory operation.

For carriers, the established pattern of empty container movements is optimal within existing institutional and market constrains

Public sector role is limited: Most institutional issues are outside public influence

Conclusion (2)

- Information systems will provide new tools and venues for ocean carriers and drayage firms to improve the efficient movement and allocation of empty containers without scarifying business opportunities
- Local government incentives may necessary to support these systems in the early stages of development and industry out-reach

Thank You