

Promoting Carbon Credit Trading in the Thailand Railway Sector

Decarbonization in the Railway Sector Workshop

19 January 2026

Mr. Pannaphat Somwang

Chief of Rail Infrastructure and Licensing Regulation Group

Department of Rail Transport

Thailand Carbon Market Context

1

National Framework

Thailand uses the **Thailand Voluntary Emission Reduction Program (T-VER)** as the primary voluntary mechanism for domestic GHG mitigation.

2

T-VER & Premium T-VER Mechanisms

T-VER Standard

Focuses on domestic emission reductions with a **7-year** crediting period for railway projects.

Premium T-VER

A higher-tier standard designed for international market alignment, requiring more rigorous validation and verification (V&V) processes.

3

Where Railway Fits in the Voluntary Market

Modal Shift: Rail projects generate verified carbon credits by shifting passengers and freight from higher-emission road transport to lower-emission rail systems.

Standards and T-VER Project Framework for the Railway Sector

1 Calculation Standards and National Accreditation

GHG emissions are calculated in accordance with methodologies and guidelines approved by the **Thailand Greenhouse Gas Management Organization (TGO)**.

Electric Rail (Mass Transit): Follows the T-VER-S-METH-03-01 (Modal Shift Methodology)

2 T-VER Project Participation Conditions

- ✓ **Eligible Projects:** Rail-based mass transit system or railway infrastructure located within Thailand (Bangkok, vicinity, or provincial areas).
- ✓ **Project Scope:** Focuses on new developments or significant system expansions that demonstrate measurable emission reductions compared to the baseline.
- ✓ **Operational Timeline:** The project must have commenced operation no more than three years prior to the date of Project Design Document (PDD) validation.
- ✓ **Additionality:** The project must demonstrate additionality, meaning it represents a voluntary action beyond existing legal or regulatory requirements.

Carbon Credit Ownership & Governance

1

Infrastructure & Project Owner (MRTA)

As the owner of the railway infrastructure, the Mass Rapid Transit Authority of Thailand (MRTA) is designated as the **Project Owner** for the purposes of **T-VER project registration**.

2

System Operators & Project Developers

Private railway operators—Northern Bangkok Monorail Co., Ltd. (NBM) and Eastern Bangkok Monorail Co., Ltd. (EBM)—act as Project Developers, responsible for project implementation and monitoring under T-VER.

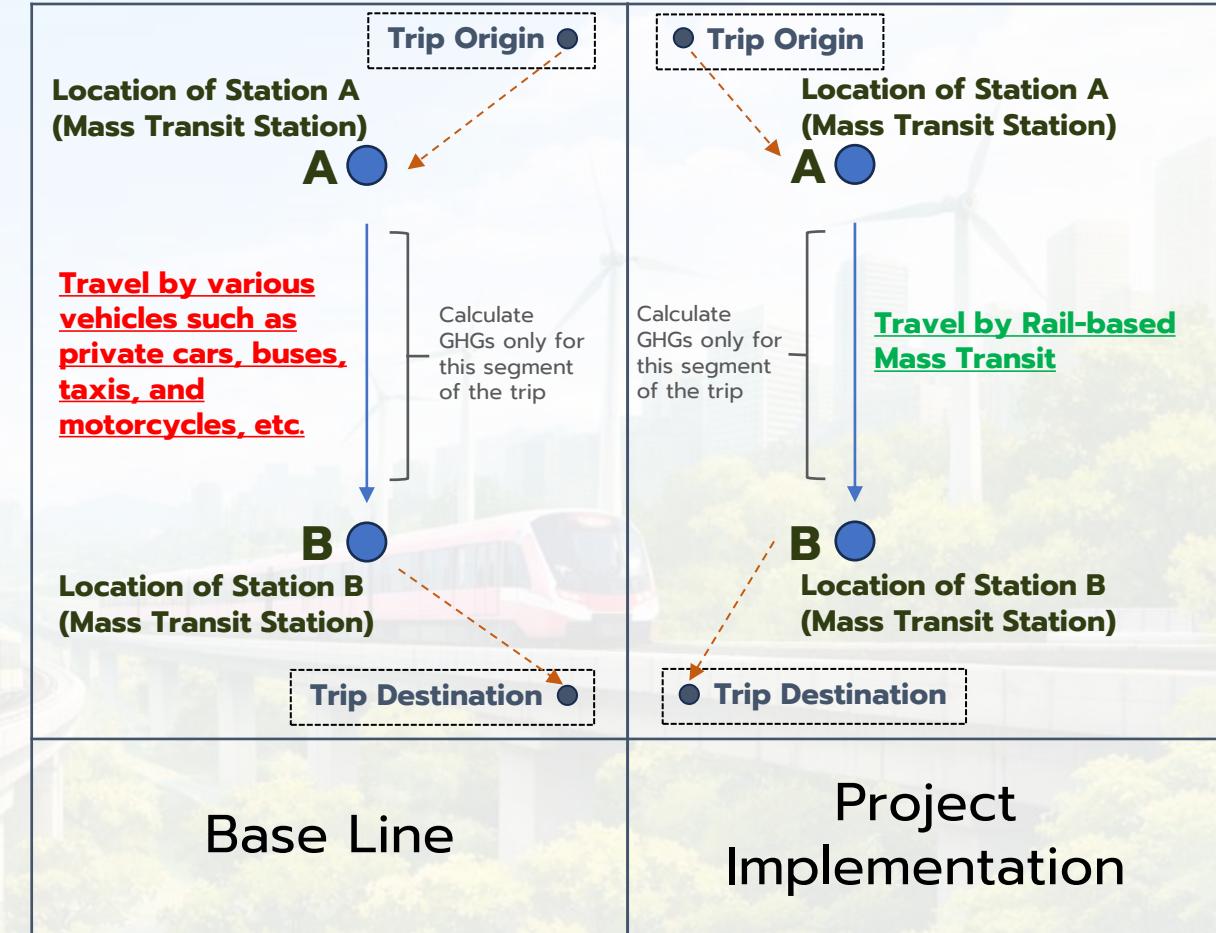
3

Authorization Mechanism for Credit Rights

- ✓ **Entitlement Framework:** Ownership of carbon credits is determined in accordance with the provisions of the joint investment agreements.
- ✓ **Assignment of Rights:** The MRTA authorizes and assigns carbon credit rights to the project developers through a formal written authorization.
- ✓ **Legal Approval:** This written authorization serves two primary functions:
 - (i) approving the implementation of the project under the T-VER scheme; and
 - (ii) explicitly granting the rights to the resulting carbon credits to the project operators (NBM / EBM).

T-VER-S-METH-03-01: Modal Shift in Passenger Transportation by Rail - based Mass Rapid Transit

$$ER_y = BE_y - PE_y - LE_y$$


Where :

ER_y = **Greenhouse Gas Emission Reduction in Year y (tCO₂eq/year)**

BE_y = **Baseline Greenhouse Gas Emissions in Year y (tCO₂eq/year)**

PE_y = **Greenhouse Gas Emissions from Project Implementation in Year y (tCO₂eq/year)**

LE_y = **Greenhouse Gas Emissions from Leakage in Year y (tCO₂eq/year)**

Case Studies – Real Railway Projects

1. Pink line Project

Project Owner :
Mass Rapid Transit Authority
of Thailand (MRTA)

Concessionaire (Operator) :
Northern Bangkok Monorail
Co., Ltd. (NBM)

2. Yellow line Project

Project Owner :
Mass Rapid Transit Authority
of Thailand (MRTA)

Concessionaire (Operator) :
Eastern Bangkok Monorail
Co., Ltd. (EBM)

On-site Questionnaire Survey

Yellow line Project		Pink line Project	
Average Daily Passengers	42,577 trips/day	Average Daily Passengers	55,625 trips/day
Required Sampling Rate	5.0% (as per T-VER guidelines)	Required Sampling Rate	5.0% (as per T-VER guidelines)
Minimum Required Samples	2,129	Minimum Required Samples	2,782
Actual Collected Samples	2,154	Actual Collected Samples	2,816
Survey Dates	29 May – 1 June 2025	Survey Dates	5 – 8 June 2025

Yellow Line Project Baseline Scenario

GHG Emissions Without the Project

Baseline Scenario: Estimated GHG emissions from passengers' alternative modes of transport, assuming the Yellow Line was not available.

Travel Mode Share

The survey identified the primary transport modes replaced by the Yellow Line

Public Bus: 32.23% (Highest shift)

Songthaew (Shared Pickup): 9.45%

Taxi: 23.36%

Motorcycle Taxi: 8.53%

Private Car: 19.92%

Private Motorcycle: 6.50%

Baseline Emission Factor (CT_{BL,y}): 73.97 gCO₂ per passenger-kilometer (pkm)

Annual Number of Passengers: 90,721,884 (Source: Data from the Feasibility Study)

Annual Passenger Activity (PKM_{PJ,y}): 675,878,035.80 pkm/year

Total Baseline Emissions (BE_y): 49,993.03 tCO_{2eq}/year

Yellow Line Project Scenario & ER Results

Project Scenario: Emissions from Project Implementation GHG emissions arising directly from electric railway operations, mainly from electricity consumption.

Annual Electricity Consumption ($EC_{PJ,y}$): 30,967,316.47 kWh/year

Grid Emission Factor ($EF_{EC,PJ,y}$): 0.468 tCO₂/MWh

Total Project Emissions (PE_y): 14,498.90 tCO₂/year

Net GHG Emission Reductions (ER_y):

Emission reductions are calculated by subtracting Project Emissions (PE_y) from Baseline Emissions (BE_y).

Net GHG Reductions (ER_y): 35,494.14 tCO_{2eq}/year

Crediting Period: 7 Years

Cumulative GHG Reductions: 248,458 tCO_{2eq}

Pink Line Project Baseline Scenario

GHG Emissions Without the Project

Baseline Scenario: Estimated GHG emissions from passengers' alternative modes of transport, assuming the Pink Line was not available.

Travel Mode Share

The survey identified the primary transport modes replaced by the Pink Line

Public Bus: 52.72% (Highest shift)

Motorcycle Taxi: 4.01%

Private Car: 20.39%

Private Motorcycle: 3.51%

Taxi: 16.59%

Songtaew (Shared Pickup): 2.76%

Baseline Emission Factor (CT_{BL,y}): 61.57 gCO₂ per passenger-kilometer (pkm)

Annual Number of Passengers: 96,723,552 (Source: Data from the Feasibility Study)

Annual Passenger Activity (PKM_{PJ,y}): 727,361,111 pkm/year

Total Baseline Emissions (BE_y): 44,782 tCO_{2eq}/year

Pink Line Project Project Scenario & ER Results

Project Scenario: Emissions from Project Implementation GHG emissions arising directly from electric railway operations, mainly from electricity consumption.

Annual Electricity Consumption (EC_{PJ,y}): 48,317,171.59 kWh/year

Grid Emission Factor (EF_{EC,PJ,y}): 0.468 tCO₂/MWh

Total Project Emissions (PE_y): 22,622 tCO₂/year

Net GHG Emission Reductions (ER_y):

Emission reductions are calculated by subtracting Project Emissions (PE_y) from Baseline Emissions (BE_y).

Net GHG Reductions (ER_y): 22,160 tCO_{2eq}/year

Crediting Period: 7 Years

Cumulative GHG Reductions: 155,120 tCO_{2eq}

DRT Digital Toolkit: Rail GHG & Air Pollutant Calculator

Multi-Platform Access & Connectivity

1 Web-Based Interface

2 Mobile Optimization

Targeted Stakeholder Groups

Rail Passengers: Urban and intercity travelers seeking to track their personal carbon footprint.

Freight Transport Operators: Businesses assessing the environmental benefits of shifting freight from road to rail.

Project Planners: Organizations engaged in the strategic planning and development of new rail infrastructure.

Urban & Intercity Rail Passengers

Front End

Calculation Method Options :

- Urban rail and Rail passengers**
- Rail freight transport operators**
- Organizations involved in the planning and development of rail projects**

Click to Pick
Intercity rail passengers or Urban rail passengers

Route and travel mode

เดินทางด้วยรถไฟ / รถโดยสาร

Origin Line (Starting line) : สายสีฟ้า

Origin station : สถานี

destination station : สถานี

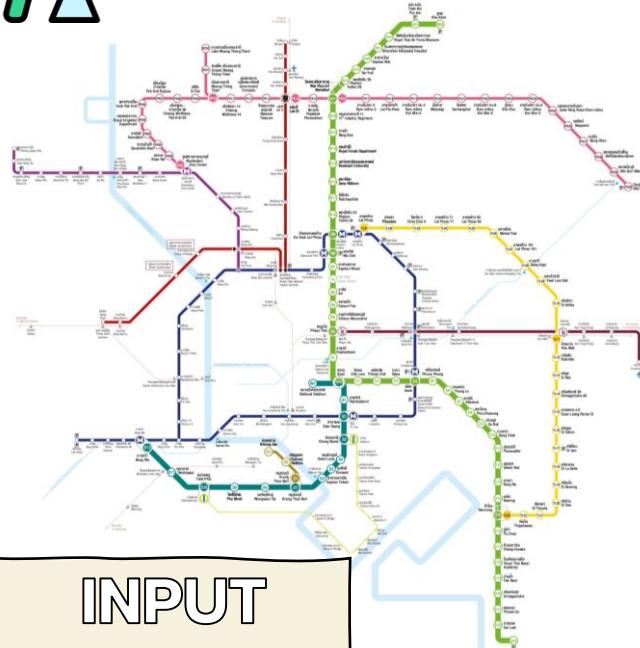
Destination Line (Ending line) : สายสีเขียว

相比哪種交通工具？(車、機車、公車)

相比哪種交通工具？(車、機車、公車)

เปลี่ยนที่ยืนกับการเดินทางรุ่งรัตน์

หมายเหตุ : * ท่านต้องตั้งค่าเดิมพัน


Reduced greenhouse gas emissions and air pollution

CO ₂	PM _{2.5}	NO _x	CO
0	0	0	0
0	0	0	0
0	0	0	0

หมายเหตุ : ค่า CO₂ ต่ำ g ค่า PM_{2.5} NO_x CO ต่ำ mg

1. Urban rail and Rail passengers

INPUT

OUTPUT

Source :

- Greenhouse gas (GHG) emissions are calculated using emission factors EIA , Thailand Greenhouse Gas Management Organization (TGO)
- Air pollutants are calculated using the relevant emission factors EMEP/EEA EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019

13

Rail freight transport operators

Front End

Calculation Method Options :

- Urban rail and Rail passengers**
- Rail freight transport operators**
- Organizations involved in the planning and development of rail projects**

In the case of road freight transport

ประเภทสินค้าที่ขนส่ง ประเภทค่า Type of goods transported

น้ำหนักสินค้าที่ขนส่งทั้งหมด Total weight of goods transported (Tons/Trip)

จุดเดparts จุดเดparts Origin location Destination location

ระยะทาง Distance (kilometers)

In the case of rail freight transport

ชนิดสินค้า สถานีเดparts Origin station สถานีปลายทาง destination station

ปริมาณเชื้อเพลิงที่ใช้ Amount of diesel fuel used (Tons/Trip)

The unit of CO₂ is grams , g

Reduced greenhouse gas emissions and air pollution

In the case of road transport CO₂ PM_{2.5} NO_x CO

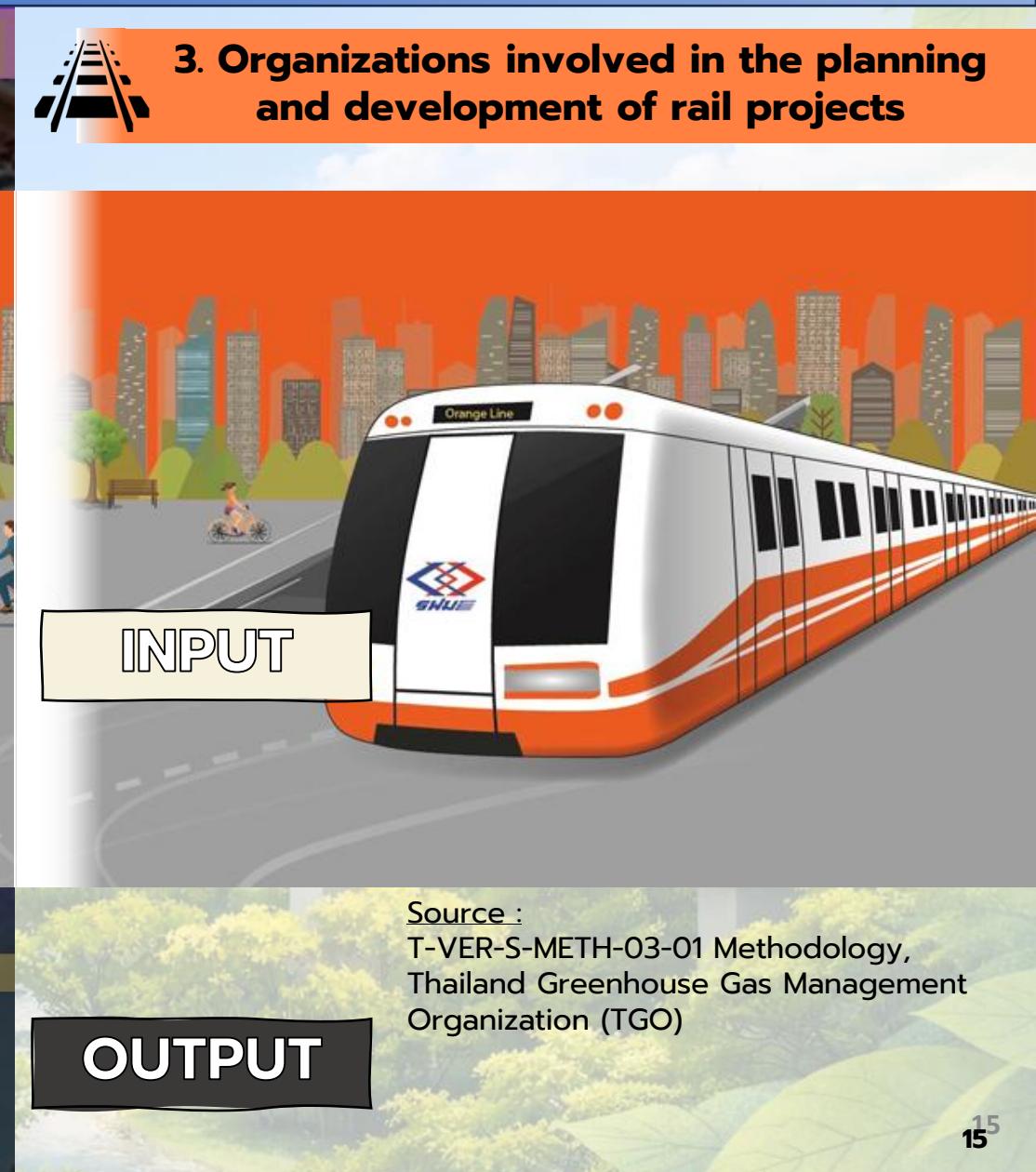
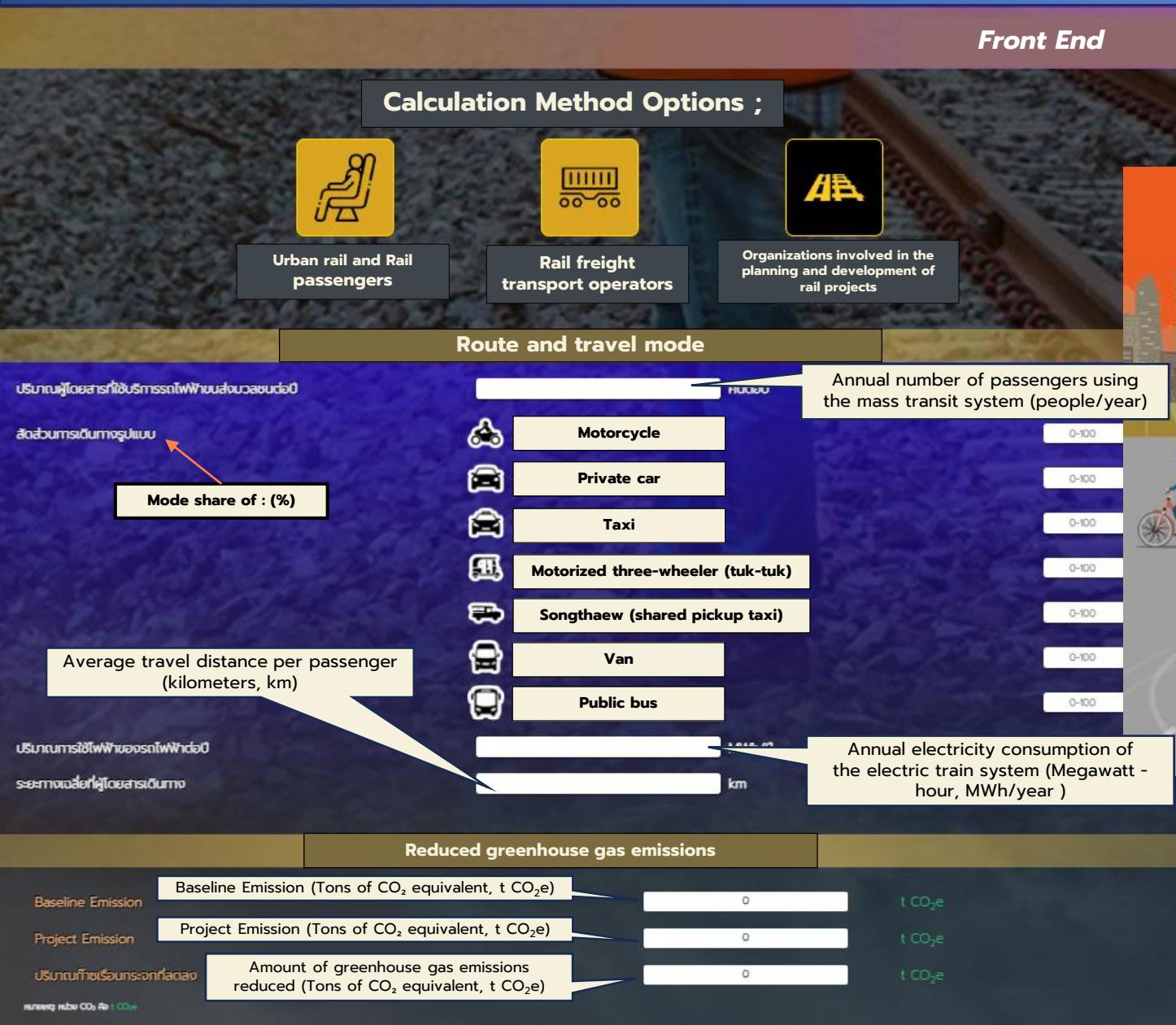
In the case of rail transport

The amount of greenhouse gas and air pollution reduced by using rail transport

The units of PM_{2.5}, NO_x, and CO are milligrams, mg

2. Rail freight transport operators

INPUT for Road



INPUT for Rail

OUTPUT

Source :

- GHG is calculated in accordance with the relevant CDM regulations : AM0090 Clean Development Mechanism
- Air pollutants are calculated using emission factors in accordance with EMEP/EEA EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019

Organizations involved in the planning and development of rail projects

Recommendations for Carbon Credit Implementation in Thailand's Railway Sector

Inclusion in Terms of Reference (TOR): Carbon credit requirements should be formally incorporated into bidding documents and concession renewal conditions.

Mandatory Operator Compliance: Concessionaires shall be contractually required to establish data collection plans and undertake T-VER project registration, where applicable.

Addressing Early-Stage Efficiency: During initial operations, lower ridership levels may result in CO₂ reductions that do not yet offset electricity consumption. Extending the crediting start date would allow for a more representative assessment of the project's environmental impact.

Annual Mode Share Surveys: Support operators in conducting annual passenger behavior surveys to maintain a precise and up-to-date Baseline Scenario.

Driving Modal Shift & Passenger Volume: Increasing rail ridership through modal shift is essential to enhancing both project viability and carbon credit outcomes.

Expanding Methodological Coverage: Expanding T-VER methodologies to comprehensively cover passenger and freight rail will strengthen modal shift incentives and market credibility.

Thank You

