Preferences of urban rail users for first- and last-mile autonomous vehicles: Price and service elasticities of demand in a multimodal environment

Ryosuke Abe (JTTRI)

INTRODUCTION

- Integrating autonomous/automated vehicles (AVs) in transit networks is a critical problem in metropolitan areas (MAs) worldwide.
- In large/medium-sized MAs, first- and last-mile AVs to rapid transit are expected to contribute to ulletimprovements in transit accessibility, particularly in suburban areas, among other benefits.
- Preferences of urban rail users for these services are not well understood and are investigated in the Tokyo MA that has diverse conditions in access to rail stations.

ACCESS MODE CHOICE

First- and last-mile transportation market ¹

The majority of daily transit users walk/cycle to and from transit stations.

Figure 1 Places of respondents

- Current practice uses 800 m (1/2 mile) walking access to train stations and 400 m (1/4 mile) to bus stops as the rule of thumb to define the transit catchment areas.
- Longer distance is strongly correlated with a lower probability of walking to transit.

Behavioral assumption of urban rail users

- In the Tokyo MA, 80% of rail users walk/cycle to and from stations if they started/ended a trip within a 1-km radius of stations, and motorized modes might not be competitive here.
- Rail users who begin a trip far from stations are assumed to have a sequential decision process. They first choose a station to depart and second an access mode.²
- Access mode choice model is then estimated for those rail users given their predetermined departure stations. Home-end access is investigated in this study.

DATA

- A web-based survey was conducted for 2300 residents, aged 20 to 74 years, who lived within 1–5 km from their nearest stations in the Tokyo MA. [Figure 1]
- Among all respondents, 35% take three or more rail trips per week and 80% (regarded as rail users) take at least a rail trip per year. [Table 1]

Stated choice

Table 1 Current access mode use of rail-using respondents (n=1834)

Alternative	Modal share	Distance (average)	Travel time (average)
Bus	19.2%	2.4 km	21 min
Car driver	4.0%	2.9 km	19 min
Car passenger (drop-off)	6.5%	2.5 km	13 min
Bike	20.0%	1.8 km	15 min
Walk only	50.0%	1.3 km	16 min

- Stated choice tasks were pivoted around rail-users' recent access to the station; each respondent was asked to choose a preferred mode given attributes of the current access mode and AV service.³ [Table 2]
- Before choice tasks, Information on AVs was presented with text, illustrations, and photos, including a summary of the latest safety guidelines for AVs.
- Each respondent conducted six repeated choices with varied AV service levels. In total, 10,800 choice observations are used for the analysis.
- With these choice data, multinomial logit models (with an error correlation between AVs and buses) are estimated for leisure and work trips.

RESULTS

21% of choice observations prefer AV service over the current access mode.

- 1. Negative effects of non-family members in a vehicle on AV use are stronger if they were strangers and/or in leisure trips; individuals who have physical difficulties in traveling are more likely to use AVs. [Appendix in next page]
- 2. For leisure trips, individuals traveling with others prefer AV use; individuals living with small children or living alone and/or younger individuals prefer AV use.
- 3. AV service is more sensitive to its price in leisure trips. **[Table 3]**

Table 2 Design of stated choice experiment for access mode

Attribute	Current access mode	AV service
Travel cost	XXX [JPY]	Cost per capita: 30% 50% 70% × taxi fare per capita
Wait time	_	After hailing AV service: 3 5 10 min or 6 10 15 min (for suburbs)
Frequency for buses	XXX	
Travel X time	XXX [min]	In-vehicle time: 70% 100% 130% × car travel time (seven categories by place of the trip and peak/off-perk)
		Walk time to reach the ticket gate: 1 min
Ride sharing	_	none/family members only acquaintances strangers

Table 3 Elasticities of demand for access modes WRT AV cost

4. AV service is a substitute for driving a car and bus use in leisure trips, and it is so for bus use but less likely for cycling and walking in work trips. **[Table 3]**

CONCLUSIONS

- 1. AV access could be a substitute for slower transit in work trips, while it has diverse substitution patterns in leisure trips.
- 2. On-demand and affordable transit access enabled by AVs may particularly benefit those who may currently have restrictions in accessing transit.
- 3. Transit users' strong resistance to introducing first- and last-mile AVs was not observed from the results of the overall acceptability. [Appendix]

In future research, these preferences serve as fundamental knowledge for estimating demand for the service and the impacts on transit/rail demand.

and wait time (based on estimated models)

	Alternative								
	AV service	Bus	Car driver	Car passenger	Bike	Walk			
eisure trips									
AV cost	-0.57	0.31	0.36	0.18	0.13	0.11			
AV wait time	-0.15	0.06	0.07	0.05	0.04	0.04			
Vork trips									
AV cost	-0.27	0.35	-	-	0.08	0.04			
AV wait time	-0.05	0.06	-	_	0.02	0.01			

Note: Mode choice elasticity approximates the ordinary elasticity in work trips, and underestimates it in leisure trips as trip generation effects are not incorporated (Wardman, 2014)

¹ e.g., Chalermpong and Wibowo (2007); Chia et al. (2016); Durand et al. (2016); Rastogi and Rao (2003); Martens (2004); Wang and Liu (2013); ² Chakour and Eluru (2016); ³ Abe et al. (2020) for a review of SC studies for AVs