

CURRENT STATUS & STRATEGIES FOR NATURAL GAS DEVELOPMENT USING FLNG

Seminar on Offshore Activities for Natural Resources Japan International Transport Institute (JITI)

Hamzah Ahmad 25 February 2015 Tokyo, JAPAN

© 2015 PETROLIAM NASIONAL BERHAD (PETRONAS)

All rights reserved. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise) without the permission of the copyright owner.

Table of Content

- 1. PETRONAS LNG Presence Today
- 2. Global FLNG Project Overviews
- 3. The Journey
- 4. Why Offshore?
- 5. Integrated Concept
- 6. Combinations of Proven Components
- 7. Hull Construction
- 8. Topside Construction
- 9. Configurations
- 10. Advantages
- **11**. Key Design Considerations Selection Criteria / Key Technologies
- 12. Challenges
- 13. Conclusion

PETRONAS LNG Presence Today PETRONAS LNG is one of the leaders in LNG production worldwide

Global FLNG Projects Overview

FIELD	LOCATION	OPERATOR	CAPACITY (MTPA)
Kanowit	Malaysia	PETRONAS	1.2
Rotan	Malaysia	PETRONAS	1.5
Prelude	Australia	SHELL	3.6
Browse	Australia	WOODSITE	10 - 12
Abadi	Indonesia	INPEX	2.5
Bonaparte	Australia	GDF SUEZ	2.3
Cash/ Maple	Australia	PTT	2
Greater Sunrise	Australia	WOODSITE	4
Scarborough	Australia	EXXON MOBIL	6 - 7

Source : Energy Business Intelligence

The FLNG Journey...

Floating LNG Compression ratio : 1/600

 Since 2006, PETRONAS considered many options to monetise the small and stranded gas fields.

		Final Investment Decision (FID)	Current Progress	Planned Completion
	PFLNG 1	March 2012	89%	1 st Quarter 2016
7	PFLNG 2	January 2014	30%	1 st Quarter 2018

Why FLNG?

ONSHORE

OFFSHORE

CAPEX (excluding production systems)	Extra cost for land, pipeline, jetties, infrastructure	One facility at gas location and direct shipping to LNG buyers
EIA and Permitting	Longer process and potentially area limitations	Simpler and easier process expected for offshore locations
Installation & Abandonment	Permanent Installation	Relocatable offshore floating units
Screening of Locations	Limitations by suitability of seafronts, water depth etc.	Can be located at source even if remote area, few restrictions
Homeland Security	Close to the population	Lower risk, less public exposure

FLNG - Changing the traditional LNG landscape

Gas Production

Liquefaction

- An integrated LNG floating production, storage and offloading (FPSO) unit
- Stationed offshore at a gas field to extract natural gas from the wellhead and processed into liquefied natural gas (LNG)
- The produced LNG is stored in the FLNG containment system and is offloaded directly into LNG carriers offshore
- Solution to monetize stranded gas field or as an early production option
- To be proven operationally & may be a widely used solution for future LNG production

PETRONAS FLNG – A Combination of Proven Technologies

PROCESS PLANT

LOADING ARMS

LNG TANKS

Complete Hull Erection from Steel Cutting to Dock Erection

Complete Topside Erection from Steel Cutting to Erection

2 – Full Well Stream

Advantages and where FLNG is applicable

- Small and Stranded Gas Fields
- Faster Overall Project Schedule as compared to conventional grass root facility
- Early Production System (EPS) for Gas
- Mobile and re-locatable
- Difficulties in Building Plants Onshore

Key Design Considerations

Selection Criterias

- Inherent safety design
- Production Capacity and Field Development Strategy
- Process robustness, efficiency and reliability
- Proven operational experience on onshore LNG Plant

- Research and development on marinisation
- Sea state conditions (stability and structural integrity)
- Relative size of FLNG and LNGC

- Turret & Mooring System
- Acid Gas Removal (AGR) Process
- Liquefaction Process
- Cargo Containment System
- Marine Loading Arm

Turret & Mooring System

- Function: to station-keep the FLNG
- External turret is employed
- Considerations:
 - Provision for additional risers and umbilical at future location
 - Robustness against various metocean data
 - Internal vs external turret or other type of mooring systems
 - Permanent or detachable

Acid Gas Removal (AGR) Process

Function: to remove contaminants Key parameters considered:

Reservoir gas compositions

E.g: Could be divided in phases depending on field specific:

- Phase 1 = 10% CO₂
- Phase 2 = 20% CO₂
- High availability (marinisation) and other considerations due to motion
- Smaller foot print
- Available technologies such as

Liquefaction Process

- Function: to liquefy the natural gas
- Several technologies considered from various technology providers;
 - Dual N2, C3/MR, Cascade etc.
- Redundancy for increased availability and robustness
- Rapid ramp-up
- Safety consideration
- N2 is selected due to lean gas field

Cargo Containment System

- Function: to store the LNG
- Available technologies: semi-prismatic, moss, membrane etc.
- Considerations:
 - Least susceptible to sloshing and Structural Integrity
 - Footprint, weight & vessel displacement
 - Cost competitiveness
 - Operating cost and BOG efficiency
 - Shipyard capability and constructability

Membrane GTT No 96

Independent Moss Type

Independent IHI-SPB

Source : GTT, IHI and Moss

Marine Loading Arms

- Function: to transfer the LNG into the LNGC
- One of the most critical design consideration
- Capability to load time to avoid plant shutdown
- Ship to Ship or Side by side offloading with targeting system
- Safety Consideration
- Require compatibility study between FLNG and LNGC
- Highly dependent on:
 - Relative size of FLNG and LNGC
 - Sea state conditions
 - Draft variations during off-loading
 - Working envelope

Challenges in the development of FLNG

- No track record / reference
- Marinisation of topside equipment
- Towing window due to typhoon

- Feed gas composition vs. process design envelop
- Multi-product handling (LNG, condensate, LPG if any)

Conclusion

- FLNG is a breakthrough technology and it is a game changer and require bold decision in becoming the pioneer.
- FLNG signifies technology advancement solution which adds value to marginal and stranded offshore gas resources which otherwise would be uneconomical to develop via onshore LNG
- PETRONAS FLNG will become a reference / benchmark for future projects
- Design phase has considered all aspects of risk but the real operational challenges & difficulties are yet to be experienced

END OF SLIDE