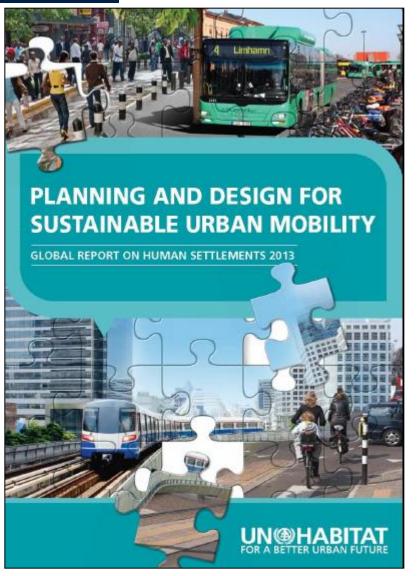


Final Symposium for the Study of Long-Term Transport Action Plan for ASEAN – Tokyo 20th February 2014

Future Visioning for Sustainable Mobility in ASEAN Countries


David Banister

Professor of Transport Studies and Director of the Transport Studies Unit School of Geography and the Environment University of Oxford

The Growth in ASEAN Cities

2013 - Urban Area

Jakarta 28 million

Manila 21 million

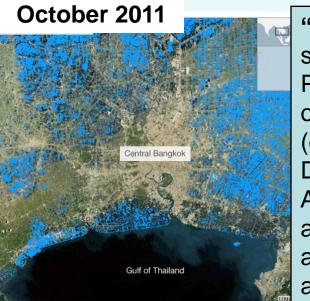
Bangkok 8.3 million

Ho Chi Minh City 8.2 million

Singapore 5.4 million

About 50% of population live in urban areas – and 36% of these (64 million) are vulnerable to flooding (ADB, 2012)

Four Mega Cities by 2025



Cities and Climate Change

Vulnerable Cities – 40% world cities and 20/29 mega cities (>10 m) coastal – storm surges, flooding, wind and high intensity/frequency events.

"Nock-ten" tropical storm - flooding +3m. Pathum Thani on the outskirts of Bangkok (centre for Hard Disk Drives) + Don Muang Airport (Thailand's 2nd airport). 800 deaths and 13.6 million affected – cost \$46B

The Growth in Mobility and CO₂ Emissions

Passenger	1950	2005	2050	
kilometres	Pkm/pers	Pkm/pers	Pkm/pers	
per person				
Developing	388	3660	10000	
economies				
World	1420	6020	14000	

2010: 825m cars and 70% in developed countries (1047m vehicles)

2035: 1600m vehicles 2050: 2100m vehicles

Source: Based on Schafer et al. (2009)

2009 Totals = $MtCO_2$	Total CO ₂ emissions		Transport CO ₂ emissions		% total emissions
Per capita = tCO ₂	Total	Per capita	Total	Per capita	
World	29,000	4,29	6,544	0.968	22.6
Asia (ex China) China	3,153 6,877	1.43 5.14	492 476	0.223 0.356	15.6 6.9

Note: Vehicles include cars, SUVs, buses, freight vehicles – but not two-three wheelers

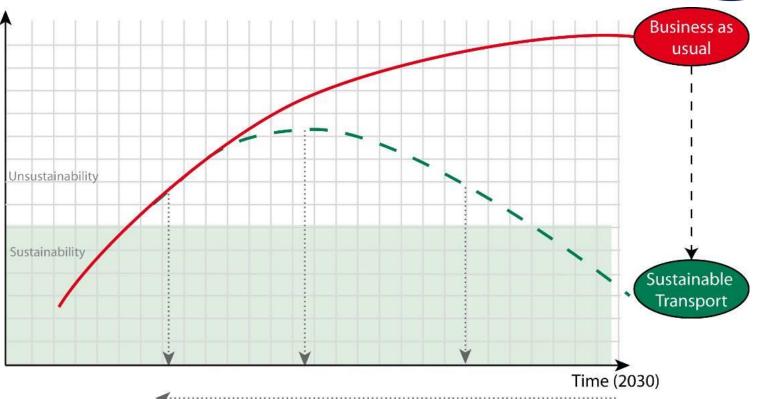
Visioning the Future

City Visions – Normative and Desirable Futures Trend Breaking views on the City in 2050

Viability – Economic sustainability

Vitality – Environmental and health

Vibrancy - Social and cultural sustainability



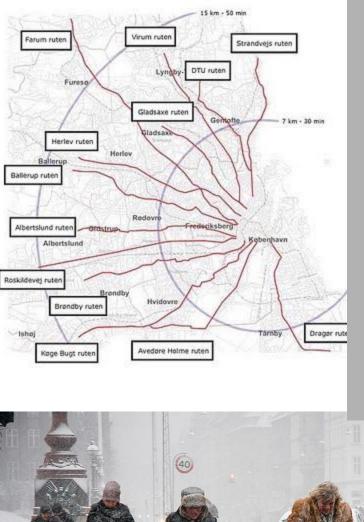
Backcasting Methodology

Multi-Criteria Sustainability **Impact**

- accessibility
- · CO2
- local environment
- economy
- safety

Backcasting and Policy Pathway

5 Stages


- 1. Baseline and projection
- 2. Alternative visions of the future
- 3. Policy measures and packages available
- 4. Appraisal, costing, optimum pathways
- 5. Conclusions policy recommendations

Resilient and Flexible Infrastructure for Cities

- Investment in low carbon transport walk, cycle and public transport – reduce transport's CO₂ impact
- 2. Capacity management making the best use of available supply of infrastructure and efficiency in the operation of the system
- Demand management pricing and regulation on all forms of transport
- Mode management promote the more efficient forms of transport – walk and cycle, public transport, rail – best available technology
- Organisational and governance structures to handle emergencies – links between agencies and responsible parties

Copenhagen: Carbon neutral by 2025 68% of residents cycle >1 per week 90% think the city is a good place for cyclists Cyclists seriously injured have fallen by >60% since 1996 Benefits = speed, convenience, health costs

PLANNING AND DESIGN FOR SUSTAINABLE URBAN MOBILITY

GLOBAL REPORT ON HUMAN SETTLEMENTS 2013

Conclusions: Towards Sustainable Urban Mobility

- The configuration of cities . . . has been highly influenced by the dominance of private transport infrastructure, facilities and services;
- 2. Value generation through accessibility has not been optimally utilized in many cities of . . . developed and developing countries;
- 3. Urban mobility is finely woven into the spatial, social, economic, political and environmental fabric of cities;
- 4. Travel is a 'derived demand' shifts focus to people and places and not travel itself;

PLANNING AND DESIGN FOR SUSTAINABLE URBAN MOBILITY

GLOBAL REPORT ON HUMAN SETTLEMENTS 2013

Conclusions: Towards Sustainable Urban Mobility

- Accessible cities places opportunities closer to each other

 and provides safe and efficient pedestrian and cycling corridors with affordable and high quality public transport options;
- Urban policy strengthens the links between land use and transport – this means a focus on enabling mobility and reducing distance travelled in cities;
- 7. Priority for funding non motorised and high capacity public transport infrastructure;
- 8. Need for strong institutional and governance structure to oversee effective implementation