# Sustainable Aviation Fuels: Research, Developments and Deployment

Jim Rekoske October 18, 2012 Tokyo, Japan





- Honeywell's Participation in Sustainable Aviation
- Overview of Sustainable Aviation Fuel Pathways
  - Technology Types
  - Trade-offs for Technology Types

# Certification Processes

# Commercial Outlook

- Current Status
- Adoption Barriers
- Expectations for the Future

# **Honeywell International**

- \$36 billion (2011) in revenues, 50% outside of U.S.
- Nearly 130,000 employees operating in 100 countries
- Morristown, NJ global corporate headquarters



\*'11 revenues estimate

# **UOP LLC, A Honeywell Company**

Honeywell

- Founded in 1914
- A leading international supplier and licensor of processing technology, catalysts, adsorbents, process plants, and technical services.
- Largest process licensing organization in the world.
- 31 out of 36 refining technologies in use today were developed by UOP

### **Markets**

- Petroleum refining
- Petrochemical production
- Gas processing
- Renewable fuels and chemicals

### **Products/Services**

- Developing and licensing of process technology
- Equipment
- Catalysts
- Adsorbents
- Molecular sieves



### We've Known Hydrocarbon Fuels for 100 Years!

## Honeywell's UOP: A Global Presence for Sustainable Fuels

### Honeywell



## **Selected Demonstration Activities**

### Honeywell









Feedstock: Camelina, Jatropha and Algal Oil





# On Friday, June 17 2011, Honeywell Green Jet Fuel completed the first-ever transatlantic biofuel flight

The Honeywell-operated Gulfstream G 450 aircraft departed Morristown, NJ to fly to Paris, France on a 50/50 blend of Honeywell Green Jet Fuel made from camelina and petroleum-based fuel.

### Driver for Our Involvement: Global Population and Prosperity

**Population Growth** 

### Honeywell

#### 2008 Africa 600 Million China people 2035 India 700 400 Other non-OECD China thousand Other Asia 600 United States 1 200 OECD Europe Other OECD 500 1 000 Latin America — Ownership rate: 400 **OECD North America** 800 **Vehicles** OECD (right axis) E. Europe/Eurasia 300 600 Ownership rate: Middle East non-OECD (right axis) 200 400 **OECD** Pacific 400 600 800 1000 1200 1 400 1 600 1 800 200 200 - 100 Million Sources: UNPD and World Bank databases; IEA analysis. 1990 2000 2008 2020 2035 1980

### **Consumption Growth**

Growth of Population (toward 9.0B) and Prosperity Drive Demand

# **Overview of Alternative Aviation Fuel Paths**

Honeywell



## **Fuel Validation Process**

### Honeywell

AIA CAAFI ATA

ACI-NA



Slide courtesy of Mark Rumizen, FAA/CAAFI

- Fischer-Tropsch based fuels available commercially today
  - Middle East (natural gas) and South Africa (coal)
- Between military and commercial aviation, more than 1,900 missions have been completed with HEFA sustainable fuels
- No commercially sustainable alternative aviation fuels available
  - HEFA fuels available in modest quantities in few locations
  - Dedicated commercial production likely in 2013 (Europe, US West Coast)
  - Additional commercial plants for similar products being built...
  - Valero (US Gulf Coast), Emerald (US Gulf Coast), ENI (Europe)
  - However, these projects unlikely to produce jet fuel
- Additional pathways at various stages of approval
  - Likely 2014 before additional pathways approved

## Role of Cost as Barrier

- Much has been written about fuel costs R&D scale
- At commercial scale, HEFA refining costs greater by \$4-5 per bbl
- Cost of raw material primary barrier
- Petroleum: \$80-100 / bbl; Sustainable HEFA feeds: >\$140 / bbl

## Cost of Feedstock Driven by Supply

- Sustainable feedstocks available, supply limited
- Opportunities exist to expand supply without other disruptions
- Market in infancy time needed, particularly in agricultural markets

### Costs at scale can be competitive with petroleum

**Commercial Outlook – Adoption Barriers (2)** 

Honeywell

### Alternative products from sustainable resources creating competition

- Fine Chemicals
- Commodity Chemicals
- Other fuels, most notably diesel fuel

## Economic considerations difficult to avoid

- Fine, commodity chemicals more valuable than fuel
- Consumer pull for renewable alternatives ⇒ considerable premium

### Technology advances, regulatory balance, and unique business approaches needed

- Without creativity, fuel will remain the low priority

Regulatory models which align values needed in short term

- HEFA availability and cost positions improve in 2013 through commercial unit operations
  - Europe, US West Coast
- Studies fostered by US Government investment in sustainable biofuels
  - Programs unlikely to complete study phase in 2013
  - No expected volumes from this program in 2013

## • New technologies emerge in 2013 – approval in 2014

- Pending pathways involve more abundant feedstocks
- Alcohols and biomass

## Airlines form partnerships to insure access

- Sustainable aviation fuels are technically feasible
  - Some pathways already approved, in use
  - Additional pathways pending, promising
- Markets and Supply Chains are immature
  - Economic inefficiencies from scale, coordination costs
  - Supply likely to be constrained in medium term
- New paradigms are required for commercial success
  - Methods needed to shorten value chains
  - Access to supply only certain if facilitation provided
  - Regulatory certainty, priority needed for aviation fuels

Significant progress in 6 short years!