

Technical Introductions of Kawasaki

13 January 2012

1. Company Profiles and Products

1.1 Company Profiles

Established:	15 October 1896
Capital:	USD \$1,254 million (as of 31 March 2011)
Net Sales:	USD \$14.8 billion (FY ending 31 March 2011)
Employees:	32,706 (as of 31 March 2011)

1.2 Global Business Operation of Kawasaki

Kawasaki has sufficient achievements and experiences in indigenization and/or transfer of technology and will pursue long-term "win-win" relationship in respective countries/regions.

2. Record of High Speed Train Production

2.1 Chronicle of Shinkansen Development

Kawasaki has been involved in development of all Shinkansen trains

1964: 0 Series (210km/h)

1982: 200 Series

(240km/h)

1985: 100 Series (230km/h)

1992: 300 Series (270km/h)

1992: 400 Series (130 or 240km/h)

1994: E1 Series (240km/h)

1997: E2 Series (275km/h)

1997: E3 Series (130 or 275km/h)

1997: E4 Series (240km/h)

1997: 500 Series (300 km/h)

1999: 700 Series (285km/h)

2000: 700-7000 Series (285km/h)

2007: N700 Series (300 km/h)

E5 Series

E6 Series (130 or 320km/h)

(320 km/h)

Kawasaki supplied 3,407 cars as of 30 November 2011.

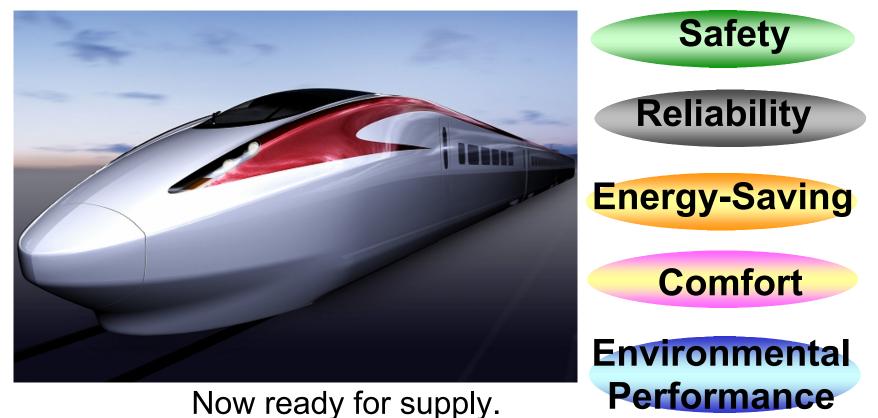
2.2 Taiwan High Speed Rail Series 700T

Train consist: 9 Motor cars plus 3 Trailer Cars **Electric power supply:** AC 25,000 V (60 Hz) Max. operating speed: 300 km/h **Propulsion system: IGBT Inverter Control Traction motor:** 285 kW x 4 x 9 cars, 3-phase Induction Motors **Dimension**: 25,000 mm(L) x 3,380 mm(W) x 3,650 mm(H) FY2004-2005 **Delivery**: Supplied Q'ty by Kawasaki: 360 cars Fire safety standard: BS6853 lb (Material, Fire Barrier, etc.)

2.3 Ministry of Railway, China CRH2

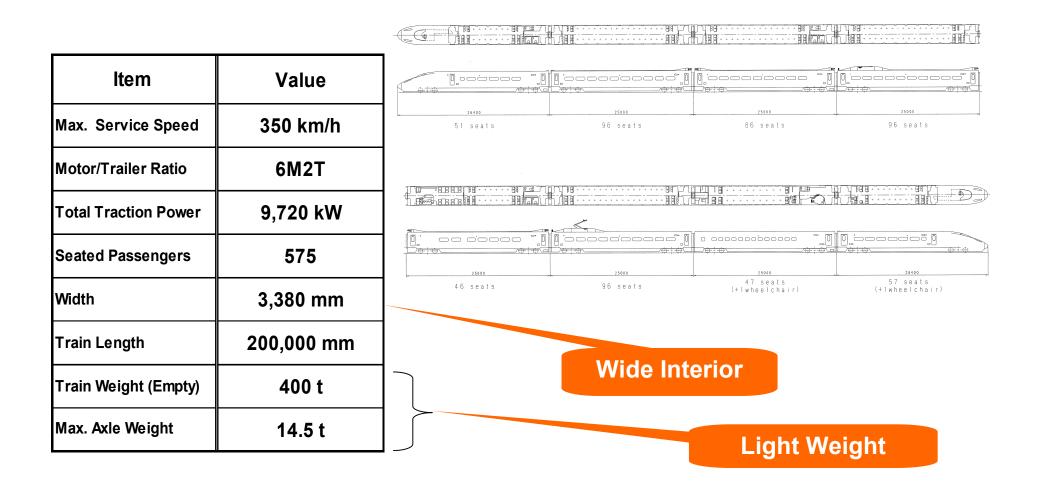
Train consist:4 Motor Cars plusElectric power supply:AC 25,000 V (50 HMax. operating speed:200 km/hPropulsion system:IGBT Inverter ConTraction motor:300 kW x 4 x 4 carDimension:25,000mm(L) x 3,3Delivery:FY2006-2007Supplied Q'ty by Kawasaki:480 cars

4 Motor Cars plus 4 Trailer Cars AC 25,000 V (50 Hz) 200 km/h IGBT Inverter Control 300 kW x 4 x 4 cars, 3-phase Induction Motors 25,000mm(L) x 3,380mm(W) x 3,700mm(H) FY2006-2007 480 cars



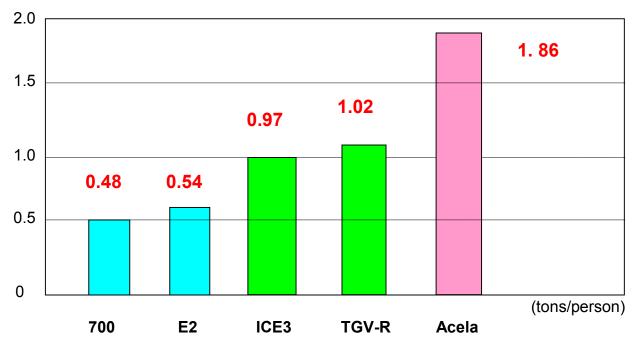
2.4 efSET – Original High Speed Train of Kawasaki

efSET= environmentally friendly Super Express Train


Proven Shinkansen Technology

+ Particular Requirements in each Country/Region

2.5 efSET – Main Specifications


3. Important Factors for Planning High Speed Rail Trains

Total System Safety and Low Operation Cost

3.1 Light Weight Design

Weight Comparison of High Speed Trains

- Wide carbody to accommodate 5 seats abreast
- -Light weight design of body and bogie
- Total system safety approach

3.2 Total System Safety

Series	Japanese HSR	ICE3	TGV-R	Acela
Train Weight / Passenger (tons / person)	0.48-0.54	0.97	1.02	1.86
Required Compression Load (tons)	Japanese Standard 100tons	UIC 150tons		49CFR Tier II 360tons (Coach) 945tons(Power Car)
Track	Fully Dedicated Track	High Speed Section-Dedicated Track Low speed Section-Conventional Track		Conventional Track

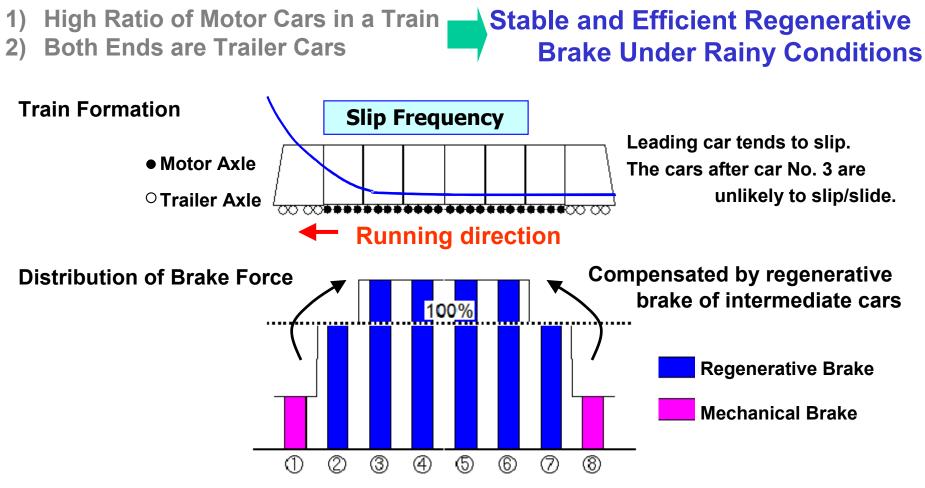
Light weight train can be realized by total safety approach, with fully dedicated track, sophisticated signaling system and other wayside systems.

Total system approach realizes safe and efficient high-speed rail.

3.3 Operation Cost

Design to realize Low Operation Cost

Light Weight \Rightarrow Low energy consumption \Rightarrow Less track maintenance


Effective Regenerative Brake

- \Rightarrow Low energy consumption
- \Rightarrow Less brake pads wear

High Reliability \Rightarrow **Less maintenance and spares**

3.4 Efficient Regenerative Brake System

Reduction of Total Power Consumption and Wear of Brake Pad

4. Conclusion

Shinkansen-based high speed rail assures safe, reliable, environmentally friendly and cost effective high speed rail in India.

Kawasaki will keep cooperating with India for successful introduction of High-Speed Rail.

Thank You Very Much for Your Attention