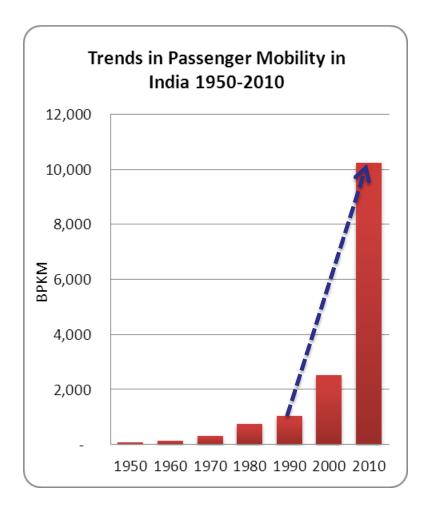


### Passenger transport sector in India Need for railway capacity enhancement

Akshima T Ghate Fellow, TERI

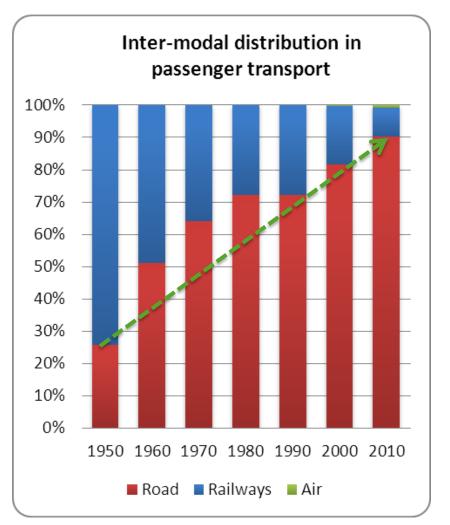

High Speed Rail Seminar in India January 13, 2012, New Delhi

# Growth in passenger transport sector in India

- Very fast growth in passenger transport activity (PKM)
- 10 times growth observed after 1990

```
1,060 BPKM
(1990) 10,230 BPKM
(2010)
```

 Growth driven by population growth, economic growth, urbanization and motorization

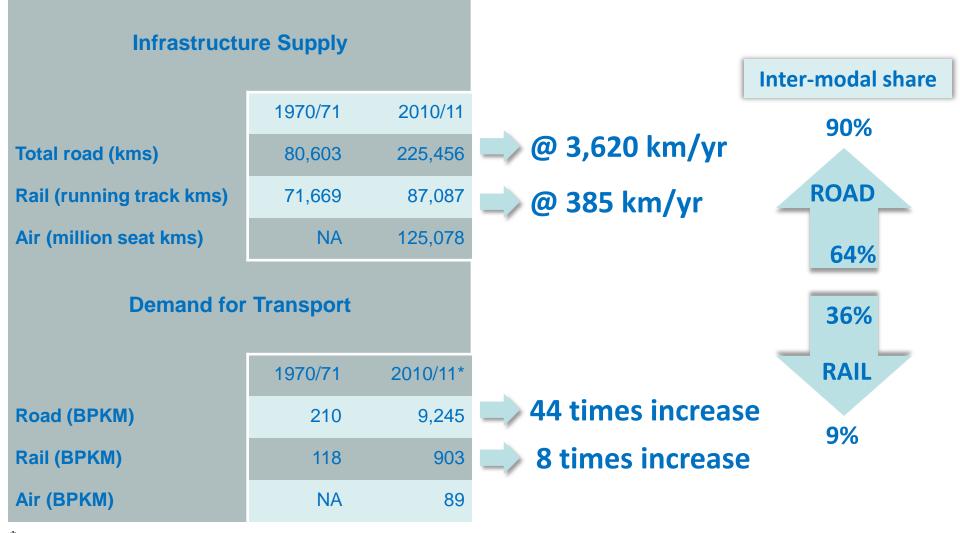



Creating Innovative Solutions for a Sustainable Future

Source: Estimates by different Ministries and Planning Commission Estimates are on higher side as compared to many other estimates

#### **Dominance of road sector**

- Emergence of road sector as the predominant means of passenger travel
  - Accounts for 90% of total PKM
- Decline in the share of Railways
  - 1950–74%
  - 2010 9%
- Air transport gaining momentum as an inter-city travel mode
  - Witnessed 8 times growth in the last decade

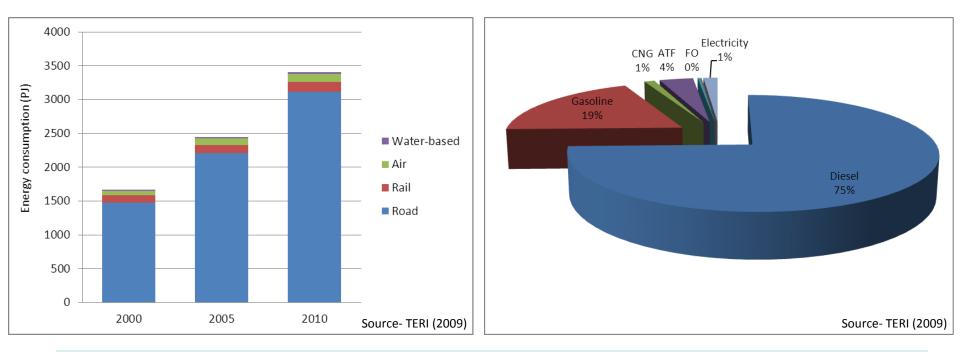



Creating Innovative Solutions for a Sustainable Future

Source: Estimates by different Ministries and Planning Commission Estimates are on higher side as compared to many other estimates

#### Slow growth of rail infrastructure Key factor responsible for decline in Railways' share

Creating Innovative Solutions for a Sustainable Future




\* Govt. estimates – are on higher side as compared to many other estimates

#### Passenger transport growth trends Not desirable from the perspective of energy and environment considerations

- Energy consumption has doubled in the last decade
- Heavy dependence on petroleum products

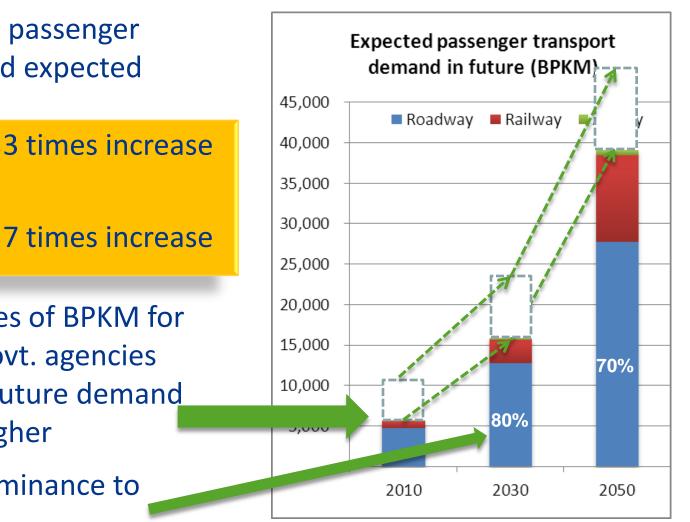
for a Sustainable Future



Trends not sustainable from the perspective of energy security, climate change impacts and local environmental impacts

Driven by growth in road sector • About 75% demand met by diesel

# BAU trends expected to continue in future




 Rapid increase in passenger transport demand expected

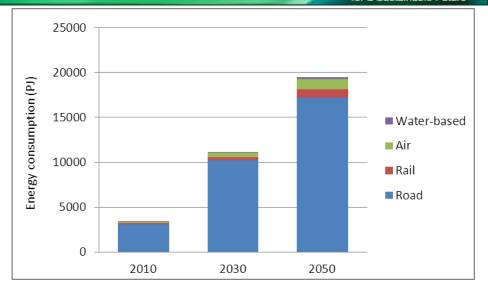
2010 to 2030

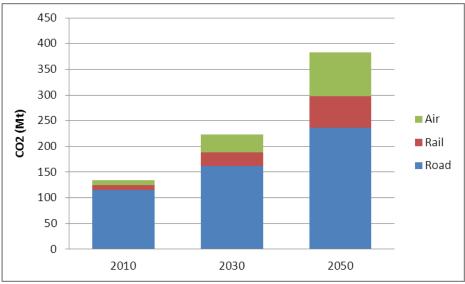
2010 to 2050 🔷 7 times increase

- If higher estimates of BPKM for 2010 given by Govt. agencies are considered, future demand could be even higher
- Road sector's dominance to continue in BAU



Source: Estimates by TERI (2009) Estimates are in the medium range as compared to many other estimates


### BAU trends expected to continue in future (contd.)


Infrastructure will grow at slower pace as compared to growth in passenger transport demand..... More so in the case of Railways

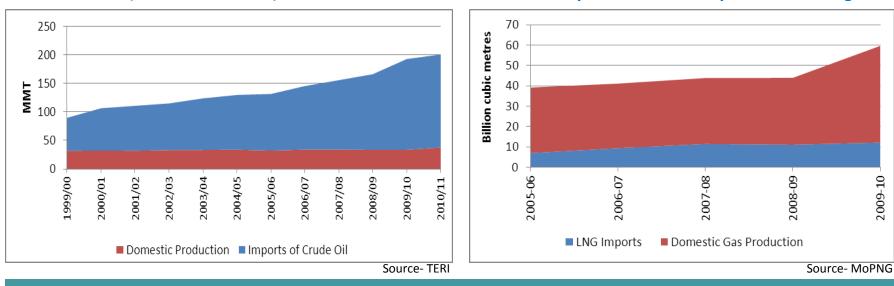
| Sector | Year    | Infrastructure supply<br>(km)                               | Avg. annual<br>growth rate of<br>infrastructure<br>supply | Demand in<br>BAU<br>(BPKM) | Avg. annual<br>growth rate<br>of demand |                                                             |
|--------|---------|-------------------------------------------------------------|-----------------------------------------------------------|----------------------------|-----------------------------------------|-------------------------------------------------------------|
| Rail   | 2010-11 | Route kms - 64, 015<br>28% double/multiple                  | 3.9%                                                      | 868                        | 13.5%                                   | Very slow growth<br>in route kms &                          |
|        | 2020-21 | lines<br>Route kms - 89,015<br>33% double/multiple<br>lines |                                                           | 2,360                      |                                         | creation of<br>multiple lines                               |
| Road   | 2010-11 | 70,934 km<br>(National Highways)                            | 5.1%                                                      | 4,722                      | 7.5%                                    | If additions in SHs/<br>MDRs/urban roads<br>are considered, |
|        | 2020-21 | 1,06,900 km<br>(National Highways)                          |                                                           | 8,276                      | ,,,,,                                   | growth in infra<br>supply could match<br>demand growth rate |

### Energy consumption levels will increase in future

- 6 times increase in energy consumption from 2010 to 2050 expected
- 90% energy consumption by road transport sector
- Heavy dependence on petroleum products (95%)
- 80% energy demand will be met by diesel
- 3 times increase in CO<sub>2</sub> emissions from 2010 to 2050 expected
- Road and air transport key contributors to CO<sub>2</sub>






Source- TERI (2009)

# Trends not sustainable from the perspective of energy security



- Import dependence expected to reach almost 90% by 2031-32
- More than 20% of the domestic gas requirements are met through imports

Domestic production and imports of crude oil

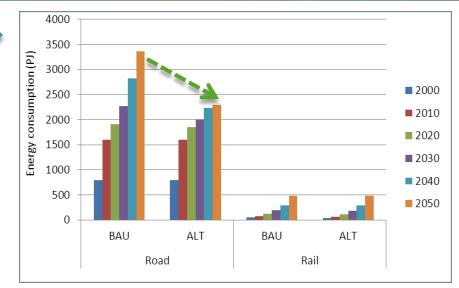


#### Need to reduce energy consumption from transport sector – Need to adopt alternative growth pathways for passenger transport sector

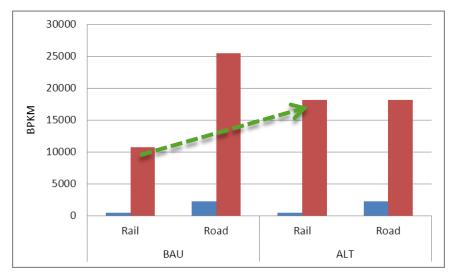
#### Domestic production and imports of natural gas

#### **Energy efficient options**

for a Sustainable Fi


- Inter-city/long distance passenger transport Shift from roads/air to railways
- Intra-city/short distance transport Shift from private modes to public modes
- Improvements in vehicle fleets vehicle efficiency and emission reduction
- Phasing out old vehicular fleet
- Establishing strict inspection and maintenance regime for in-use vehicles
- Promoting use of alternative/clean fuels and technologies
- Measures for urban areas like TDM, ITS, etc.

#### Impact of energy efficient options


Creating Innovative Solutions for a Sustainable Future

- 40% reduction in energy consumption can be achieved by implementing energy efficient options
- Reductions mainly a result of-
  - Inter-modal shift from roads to rail
  - Shift from private modes to public modes within road sector

Inter-modal share of Railways in the alternate growth scenario envisaged at 50%

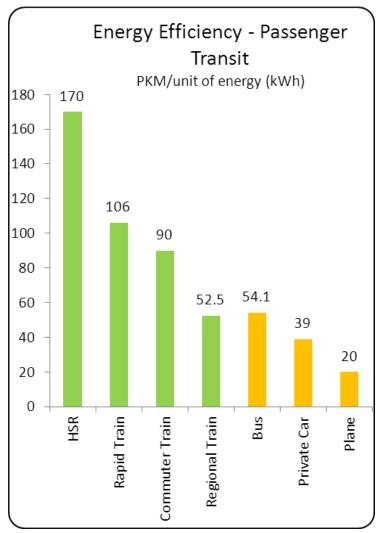


Source- TERI (2009)



Increasing Railways' share -Need increased rail capacity at fast pace

reating Innovative Solutions for a Sustainable Future

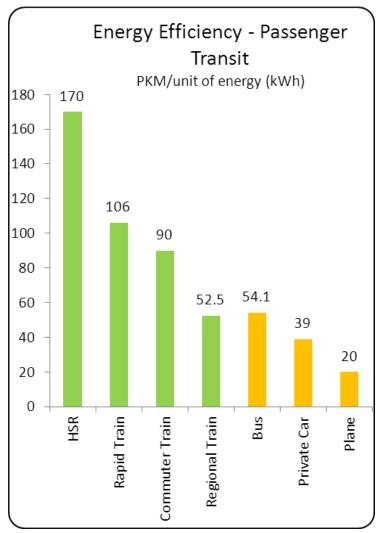

#### **Two key solutions**

•Improve the existing rail network in terms of commercial speeds/ create more capacity for passenger services

Introduce new high-speed passenger rail network

#### High speed rail (HSR) Benefits

- Reduction in energy usage on account of modal shift
  - Energy efficiency:
  - -8.5 times airplane
  - –4 times car
  - -3 times bus
- Reduction in carbon emissions
   CO<sub>2</sub> emissions (kg) per 100 PKM
   –Airplane: 17
   –Car: 14
   –HSR: 4
- Could act as catalyst for economic growth, facilitate regional development




for a Sustainable Future

Source: UIC HSR Presentation by Jean-Pierre Loubinoux 2009

#### High speed rail (HSR) Benefits

- Reduction in energy usage on account of modal shift
  - Energy efficiency:
  - -8.5 times airplane
  - –4 times car
  - -3 times bus
- Reduction in carbon emissions
   CO<sub>2</sub> emissions (kg) per 100 PKM
   –Airplane: 17
   –Car: 14
   –HSR: 4
- Could act as catalyst for economic growth, facilitate regional development



for a Sustainable Future

Source: UIC HSR Presentation by Jean-Pierre Loubinoux 2009

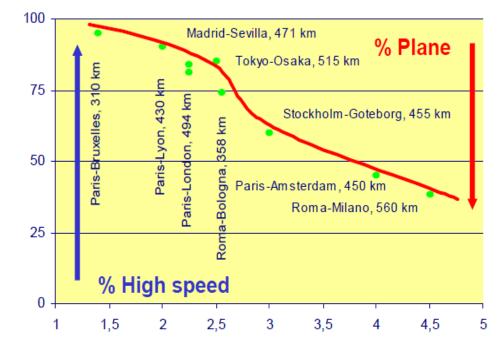
#### High speed rail (HSR) Key requirements

- Special trains
  - High speed operations require "train sets" for reasons, such as aerodynamic conditions, reliability and safety

- Special dedicated lines
  - Conventional lines, even with major upgrades, will not be able to operate at more than 200-220 km/hr; new tracks will have to be laid for operating high speed trains
- Special signaling system
  - In-cab signaling will be necessary for high speed operations
- Services
  - Time spent buying ticket, entering the station or waiting for a taxi on arrival, should be competitive with transit time by other modes

# High speed rail (HSR)

#### Investment requirements




Average costs of various categories of a HSR project (Magnitude of costs for HSR in Europe)

| Capital costs              |                               |  |  |  |  |  |
|----------------------------|-------------------------------|--|--|--|--|--|
| Infrastructure creation    | 12-30 million Euros per km    |  |  |  |  |  |
| Rolling stock              | 20-25 million Euros per train |  |  |  |  |  |
| Running Costs (p.a.)       |                               |  |  |  |  |  |
| Infrastructure maintenance | 70,000 Euros per km           |  |  |  |  |  |
| Rolling Stock maintenance  | 1 million Euros per train     |  |  |  |  |  |

#### High speed rail (HSR) Impacts

- Creating Innovative Solutions for a Sustainable Future
- 70% increase in maximum speed from 200 to 340 kmph results in net energy consumption increase by 80%
- Modal share rail can hold a majority share of the rail plus air market for journey times up to 3.5 hours



Relationship between rail speed and market share

Source: UIC-High Speed Presentation by Jean-Pierre LOUBINOUX 20090

#### High speed rail (HSR) Impacts (contd.)



#### Expected travel time savings on six routes proposed by MoR

(Assuming a maximum speed of 350 kmph and a commercial speed to maximum speed ratio of 0.7)

| Section                             | Distance<br>(km) | Existing time<br>(hrs) | HSR travel time<br>(hrs) |
|-------------------------------------|------------------|------------------------|--------------------------|
| Delhi- Amritsar                     | 443              | 5'05''                 | 2'04''                   |
| Mumbai-Surat-<br>Vadodara-Ahmedabad | 491              | 6'45''                 | 3'00''                   |
| Hyderabad-Tirupati -<br>Chennai     | 869              | 13'                    | 5′ 31″                   |
| Chennai -Bangalore                  | 362              | 4'50"                  | 1' 45''                  |
| Delhi-Agra-Kanpur                   | 435              | 4'40''                 | 2' 00''                  |
| Delhi-Jaipur                        | 308              | 4'15"                  | 1' 40''                  |
| Kolkata-Asansol-<br>Dhanbad         | 259              | 3′                     | 1'25"                    |

#### High speed rail (HSR) Challenges

#### • Funds:

- Cost of construction around Rs.100 Crores/km
- Political will:
  - Commitment, both political and economic, for a costly and long duration program

- Land acquisition:
  - Can lead to cost and time over runs
- Technology:
  - Indian Railways will need time to absorb the new technology
- Organization:
  - New Organization may need to be created



# **Thank You**