

Passenger transport sector in India

Need for railway capacity enhancement

Akshima T Ghate Fellow, TERI

High Speed Rail Seminar in India January 13, 2012, New Delhi

Growth in passenger transport sector in India

- Very fast growth in passenger transport activity (PKM)
- 10 times growth observed after 1990

1,060 BPKM (1990) 10,230 BPKM (2010)

 Growth driven by population growth, economic growth, urbanization and motorization

Source: Estimates by different Ministries and Planning Commission Estimates are on higher side as compared to many other estimates

Dominance of road sector

- Emergence of road sector as the predominant means of passenger travel
 - Accounts for 90% of total PKM
- Decline in the share of Railways
 - -1950-74%
 - -2010-9%
- Air transport gaining momentum as an inter-city travel mode
 - Witnessed 8 times growth in the last decade

Source: Estimates by different Ministries and Planning Commission Estimates are on higher side as compared to many other estimates

Slow growth of rail infrastructure

Key factor responsible for decline in Railways' share

Infrastructu	ıre Supply			
				Inter-modal share
	1970/71	2010/11		90%
Total road (kms)	80,603	225,456	@ 3,620 km/yr	
Rail (running track kms)	71,669	87,087	@ 385 km/yr	ROAD
Air (million seat kms)	NA	125,078		64%
Demand for	Transport			36%
	1970/71	2010/11*		RAIL
Road (BPKM)	210	9,245	44 times increase	e 9%
Rail (BPKM)	118	903	8 times increase	
Air (BPKM)	NA	89		

^{*} Govt. estimates – are on higher side as compared to many other estimates

Passenger transport growth trends

Not desirable from the perspective of energy and environment considerations

- Energy consumption has doubled in the last decade
- Heavy dependence on petroleum products
- Driven by growth in road sector About 75% demand met by diesel

Trends not sustainable from the perspective of energy security, climate change impacts and local environmental impacts

BAU trends expected to continue in future

 Rapid increase in passenger transport demand expected

2010 to 2030 3 times increase

2010 to 2050 7 times increase

- If higher estimates of BPKM for 2010 given by Govt. agencies are considered, future demand could be even higher
- Road sector's dominance to continue in BAU

Source: Estimates by TERI (2009)

Estimates are in the medium range as compared to many other estimates

BAU trends expected to continue in future (contd.)

Infrastructure will grow at slower pace as compared to growth in passenger transport demand..... More so in the case of Railways

Sector	Year	Infrastructure supply (km)	Avg. annual growth rate of infrastructure supply	Demand in BAU (BPKM)	Avg. annual growth rate of demand	
	2010-11	Route kms - 64, 015 28% double/multiple	3.9%	868		Very slow growth in route kms &
Rail		lines			13.5%	creation of
2020	2020 21	Route kms - 89,015		2,360		multiple lines
	2020-21	33% double/multiple lines				
2010-1 Road 2020-2	2010 11	70,934 km	5.1%	4,722	7.5%	If additions in SHs/
	2010-11	(National Highways)				MDRs/urban roads are considered,
	2020-21	1,06,900 km (National Highways)		8,276		growth in infra supply could match
		(INGLIOIIGI MIGIIWAYS)				demand growth rate

Energy consumption levels will increase in future

- 6 times increase in energy consumption from 2010 to 2050 expected
- 90% energy consumption by road transport sector
- Heavy dependence on petroleum products (95%)
- 80% energy demand will be met by diesel
- 3 times increase in CO₂
 emissions from 2010 to 2050
 expected
- Road and air transport key contributors to CO₂

Trends not sustainable from the perspective of energy security

- India imports almost 80% of its total crude oil requirements
- Import dependence expected to reach almost 90% by 2031-32
- More than 20% of the domestic gas requirements are met through imports

Domestic production and imports of crude oil

Domestic production and imports of natural gas

Need to reduce energy consumption from transport sector – Need to adopt alternative growth pathways for passenger transport sector

Energy efficient options

- Inter-city/long distance passenger transport Shift from roads/air to railways
- Intra-city/short distance transport Shift from private modes to public modes
- Improvements in vehicle fleets vehicle efficiency and emission reduction
- Phasing out old vehicular fleet
- Establishing strict inspection and maintenance regime for in-use vehicles
- Promoting use of alternative/clean fuels and technologies
- Measures for urban areas like TDM, ITS, etc.

Impact of energy efficient options

- 40% reduction in energy consumption can be achieved by implementing energy efficient options
- Reductions mainly a result of-
 - Inter-modal shift from roads to rail
 - Shift from private modes to public modes within road sector

Inter-modal share of Railways in the alternate growth scenario envisaged at 50%

Source- TERI (2009)

Increasing Railways' share Need increased rail capacity at fast pace

Two key solutions

•Improve the existing rail network in terms of commercial speeds/ create more capacity for passenger services

Introduce new high-speed passenger rail network

High speed rail (HSR) Benefits

 Reduction in energy usage on account of modal shift

Energy efficiency:

- -8.5 times airplane
- -4 times car
- -3 times bus
- Reduction in carbon emissions

CO₂ emissions (kg) per 100 PKM

-Airplane: 17

-Car: 14

-HSR: 4

 Could act as catalyst for economic growth, facilitate regional development

Source: UIC HSR Presentation by Jean-Pierre Loubinoux 2009

High speed rail (HSR) Benefits

 Reduction in energy usage on account of modal shift

Energy efficiency:

- -8.5 times airplane
- -4 times car
- -3 times bus
- Reduction in carbon emissions

CO₂ emissions (kg) per 100 PKM

-Airplane: 17

-Car: 14

-HSR: 4

 Could act as catalyst for economic growth, facilitate regional development

Source: UIC HSR Presentation by Jean-Pierre Loubinoux 2009

High speed rail (HSR) Key requirements

Special trains

 High speed operations require "train sets" for reasons, such as aerodynamic conditions, reliability and safety

Special dedicated lines

 Conventional lines, even with major upgrades, will not be able to operate at more than 200-220 km/hr; new tracks will have to be laid for operating high speed trains

Special signaling system

In-cab signaling will be necessary for high speed operations

Services

 Time spent buying ticket, entering the station or waiting for a taxi on arrival, should be competitive with transit time by other modes

High speed rail (HSR) Investment requirements

Average costs of various categories of a HSR project

(Magnitude of costs for HSR in Europe)

Capital costs				
Infrastructure creation	12-30 million Euros per km			
Rolling stock	20-25 million Euros per train			
Running Costs (p.a.)				
Infrastructure maintenance	70,000 Euros per km			
Rolling Stock maintenance	1 million Euros per train			

Source: UIC: High Speed Rail – Fast Track to Sustainable Mobility 2010

High speed rail (HSR) Impacts

- 70% increase in maximum speed from 200 to 340 kmph results in net energy consumption increase by 80%
- Modal share rail can hold a majority share of the rail plus air market for journey times up to 3.5 hours

Relationship between rail speed and market share

Source: UIC-High Speed Presentation by Jean-Pierre LOUBINOUX 20090

High speed rail (HSR) Impacts (contd.)

Expected travel time savings on six routes proposed by MoR

(Assuming a maximum speed of 350 kmph and a commercial speed to maximum speed ratio of 0.7)

Section	Distance (km)	Existing time (hrs)	HSR travel time (hrs)
Delhi- Amritsar	443	5'05''	2'04''
Mumbai-Surat- Vadodara-Ahmedabad	491	6'45''	3′00′′
Hyderabad-Tirupati - Chennai	869	13′	5′ 31″
Chennai -Bangalore	362	4′50″	1' 45''
Delhi-Agra-Kanpur	435	4'40''	2' 00''
Delhi-Jaipur	308	4'15"	1' 40''
Kolkata-Asansol- Dhanbad	259	3′	1′25″

High speed rail (HSR) Challenges

- Funds:
 - Cost of construction around Rs.100 Crores/km
- Political will:
 - Commitment, both political and economic, for a costly and long duration program
- Land acquisition:
 - Can lead to cost and time over runs
- Technology:
 - Indian Railways will need time to absorb the new technology
- Organization:
 - New Organization may need to be created

Thank You