The 154th Transport Policy Colloquium: ASEAN-India Regional Report March 14, 2023

Characteristics of ASEAN's LCCs and Centrality Analysis

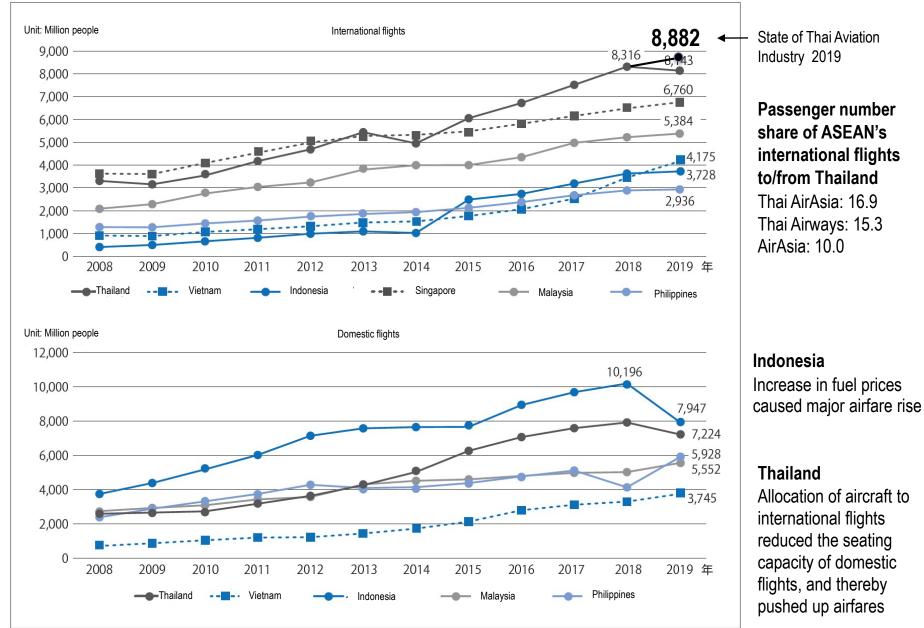
Professor Shinya Hanaoka Department of Transdisciplinary Science and Engineering, School of Environment and Society, Tokyo Institute of Technology

1

Comments

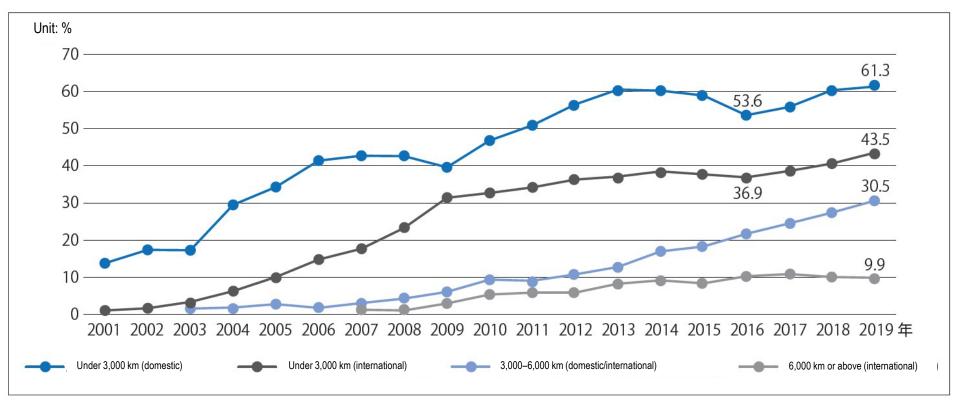
- Based on various datasets, Mr. Yamashita's analysis carefully summarizes the recent state of aviation and the transition in airlines in ASEAN.
- AirAsia's strategies particularly stand out in terms of their uniqueness.
- Compared with other transportation sectors, aviation has abundant international datasets—despite many being charged—as to airlines, passengers, airports, and other factors.
- The next step would be to not only aggregate but also analyze the data with specific objectives using statistical methods and other means (e.g., effectiveness of strategy, interpretation of value, impact of policy); this would allow for further enhancing the research.

LCCs: Their Essence


Fig. 1. Characteristics of LCC operation system/service.

(1) Low fare				
(2) High load factor				
(3) Charging of ancillary services (e.g., charged in-flight meals and entertainment, selection of spec	cific seats, checked baggage based on weight)			
(4) Point-to-point network between two locations (cost reduction by eliminating transit service and taking other steps)				
(5) High aircraft utilization with short turnaround time (reduction of cost per seat-kilometer)	Has advantage in short-haul routes. Long- haul aircraft, by nature, are highly utilized.			
(6) Utilization of non-congested/secondary airports (reduction of cost by enhancing aircraft utilization and cutting/exempting airport fees)				
(7) Unification of seat class (reduction of cost through simplifying services into economy class-only)				
(8) High-density seating arrangement accommodating many users (reduction of cost per seat)				
(9) Aircraft standardization (reduction of maintenance costs, pilot/maintenance technician training costs, etc., and discount through bulk aircraft purchase)				
(10) Promotion of online booking/sales of flight tickets (reduction of personnel costs, advertising costs, and various commissions)				
(11) Staff serving multiple duties (reduction of personnel costs)				

Reference


Hanaoka, S.: The Essence of LCCs and the Future of Domestic LCCs, *Takeoff*, **137** (2015), pp. 12–21 (in Japanese).

Shift in the Number of International/Domestic Flight Passengers in Major ASEAN Countries

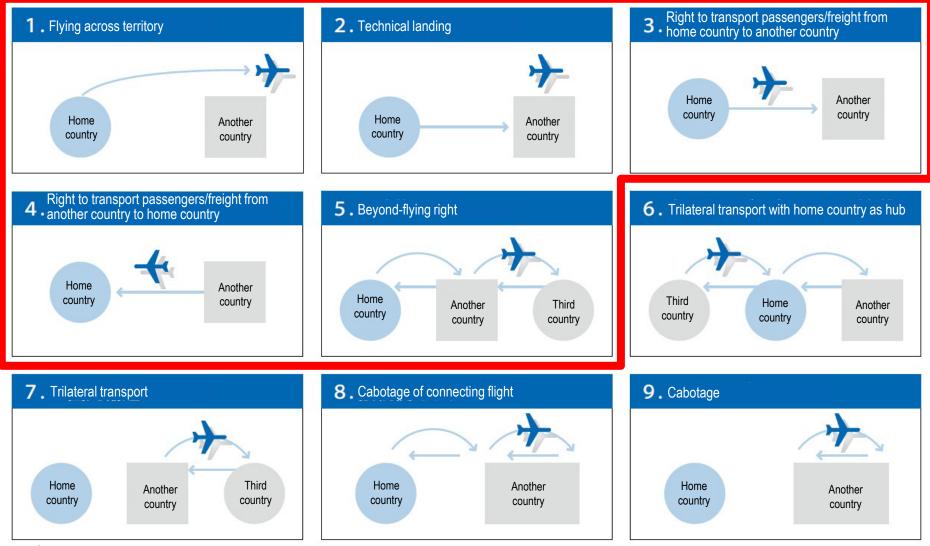
Reference

Share of Per-Stage Length LCC Seat Offering to/from ASEAN Member

Domestic flights with under-3000 km stage length: FSC seat offering increased in 2016–2017, lowering LCC shares. The primary cause of this is increased flights of Batik Air, an Indonesian FSC operator. LCCs subsequently increased their share again from 2018 onward as Indonesian LCCs Wings Air and Citilink, Malaysia's AirAsia, and Vietnam's Vietjet Air increased their flights, while services of Garuda Indonesia were significantly reduced.

Reference

Mitsubishi Research Institute, Inc.: OAG Aviation Worldwide Limited 2021 "Historical Data."

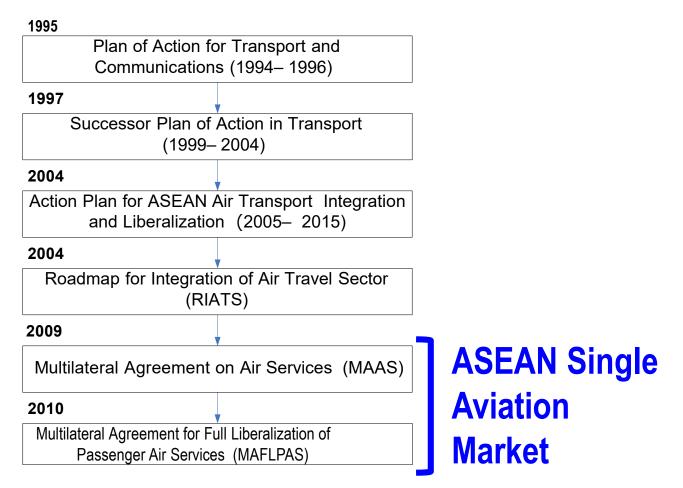

(C) Hanaoka, 2023

Characteristics of ASEAN's LCCs

Why did LCCs grow/spread in ASEAN?

- Matched needs of middle-income class
 - Low fares gave rise to new aviation demand
- Region size suitable for LCCs
 - Short-haul routes are easy to set, given the close proximity of major ASEAN cities
- AirAsia CEO Mr. Tony Fernandes' exceptional management vision
 - AirAsia leads the LCC market; broke barriers to market entry; and has foresight
- Interconnection between regional association and policies of in-region "Open Skies" pact
 Interconnection with ASEAN Economic Community
 - Same structure as that of the European Common Aviation Area (Division between FSCs [intercontinental flights] and LCCs [primarily in-area flights]), but FSCs are struggling in the long-haul international flight sector.
 - Unlike in Europe, liberalization has been limited to the fifth freedom of the air. Actions are taken with a joint venture model.

ASEAN Single Aviation Market (ASAM)



Reference

Hanaoka, S. The Arrival of the Wave of LCCs and Where Japan is Headed, Takeoff, 131 (2012), pp. 2–9 (in Japanese).

(C) Hanaoka, 2023

Main provisions of MAAS and MAFLPAS agreements

- 1. Relaxation of market access (transportation rights)
- Relaxation of ownership and control (beneficial ownership and effective control)
- 3. Adoption of common policy regarding charges, tariffs, and others

ASAM

	Implementing Protocols (Appendix)		
	Protocol 1. Unlimited third, fourth freedom traffic rights within the ASEAN sub-region		
MAAS	Protocol 2. Unlimited fifth freedom traffic rights within the ASEAN sub-region		
Signed	Protocol 3. Unlimited third, fourth freedom traffic rights between the ASEAN sub-region		
May	Protocol 4. Unlimited fifth freedom traffic rights between the ASEAN sub-region		
2009	Protocol 5. Unlimited third, fourth freedom traffic rights between ASEAN capital cities		
	Protocol 6. Unlimited fifth freedom traffic rights between ASEAN capital cities		
MAFLPAS	Protocol 1. Unlimited third, fourth freedom traffic rights between any ASEAN cities*		
Signed Nov. 2010	Protocol 2. Unlimited fifth freedom traffic rights between any ASEAN cities*		

*Member states appoint the designated points (airports)

Takes effect when ratified by three countries (ASEAN minus X formula). MAAS took effect in the same year and MAFLPAS went into effect in the following year.

- MAAS: Ratified by the Philippines in March 2016, marking the completion of ratification by all member countries.
- MAFLPAS: Ratified by Indonesia and Laos in April 2016, marking the completion of ratification by all countries.

Impact of "Open Skies" Regime Adoption in ASEAN

MAAS Protocol 5. Unlimited third, fourth freedom traffic rights between ASEAN capital cities

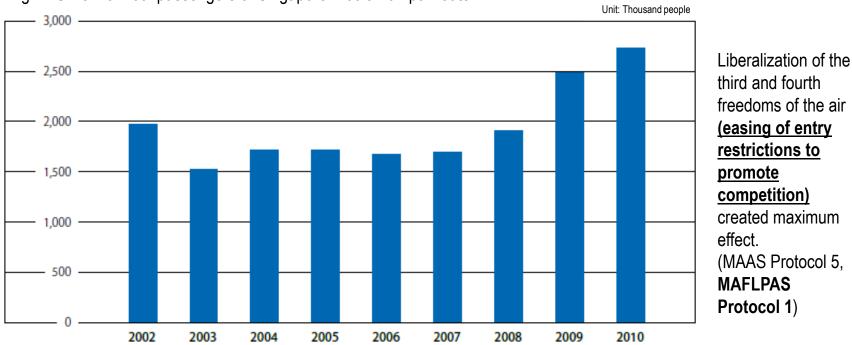


Fig. 2. Shift in annual passengers of Singapore–Kuala Lumpur route.

The Singapore-Kuala Lumpur route was the first to experience an entry deregulation. Singapore Airlines and Malaysia Airlines dominated the market prior to that. LCCs gained approval to enter the market in late 2007—albeit with an upper limit on their number of flights—leading to entries by Tiger Airways and AirAsia. In the second half of 2008, flight restrictions were removed. Jetstar Asia subsequently entered the market and Singapore Airlines and Malaysia Airlines drastically cut their fares, benefitting customers extensively.

Reference

Hanaoka, S: The Arrival of the Wave of LCCs and Where Japan is Headed, Takeoff, 131 (2012), pp. 2–9 (in Japanese).

LCC Joint Venture Model

- ASAM has yet to see the liberalization of the seventh (transportation between other countries), as well as eighth and ninth (cabotage), freedoms of the air.
- Launching a joint venture in another country within the upper limit of foreign ownership restrictions allows for—in "practical" terms—transport between and within other countries.
 - Offers an advantage of an ability to use **another country's airport as a hub** for international and domestic flights alike.
 - In terms of beneficial ownership and effective control, the model can be interpreted as a "de facto" relaxation of the latter.
- Advantage of LCCs: No dominant image of nationality

-Despite four AirAsia airlines operating at Bangkok's Don Mueang Airport (DMK), there is little awareness as to the differences between Thai AirAsia [FD] (e.g., SIN routes), which serves as a hub, AirAsia [AK] (KUL), Indonesia AirAsia [QZ] (DPS), and Philippines AirAsia [Z2] (MNL).

- Fits in for domestic transportation in other countries as well.
- Note that neither liberalization efforts nor the joint venture model are effective in congested airports.
 - Departure/arrival slots are considered separately. Aircraft utilization cannot be raised without leeway in the slots. (cf. Reconsiderations are needed for post-pandemic "use it or lose it" U/L rules and vested rights)
 - Significance of secondary airports (e.g. DMK)

Joint Venture LCCs in ASEAN

• AirAsia Group

AirAsia (Malaysia)

Thai AirAsia, Indonesia AirAsia, Philippines AirAsia, AirAsia India, AirAsia X, Thai AirAsia X (Business relinquished) AirAsia Japan, Indonesia AirAsia X

• Lion Air Group

Lion Air, Batic Air [FSC], Wings Air (Indonesia)

Malindo Air (Malaysia [FSC]), Thai Lion Air (Thailand)

• Jetstar Group

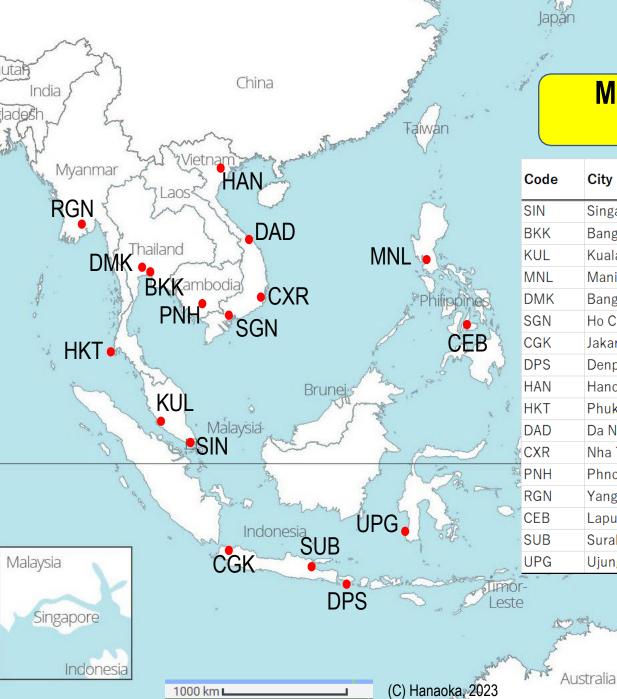
Jetstar (Australia), Jetstar Asia (Singapore), Jetstar Japan

Additional information:

Impact of Brexit (UK is no longer part of the European Common Aviation Area)

EasyJet Europe (launched 2017): Aims to maintain hub airport in continental Europe Ryanair UK (launched 2019): Aims to maintain hub airport in the UK

(C) Hanaoka, 2023


Primary Airports in ASEAN

2019: Top 15 airports by number of international flight passengers + two airports

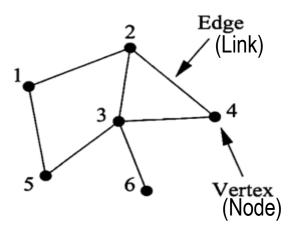
Code	City	Airport Name	Country	Intl	Dom	Transit	Passenger	Movement
	ony		oounay	inta	Dom	Tranon	Total	Total
SIN	Singapore	Singapore Changi Airport	Singapore	67,601,000	-	682,000	68,283,000	385,630
BKK	Bangkok	Suvarnabhumi Airport	Thailand	52,933,565	11,963,616	524,663	65,421,844	380,909
KUL	Kuala Lampur	Kuala Lumpur International Airport	Malaysia	44,854,685	17,402,737	79,047	62,336,469	408,435
MNL	Manila	Ninoy Aquino International Airport	Philippines	24,984,439	22,913,607	-	47,898,046	308,422
DMK	Bangkok	Don Mueang International Airport	Thailand	17,808,324	23,455,238	48,228	41,311,790	284,954
SGN	Ho Chi Minh City	Tan Son Nhat International Airport	Vietnam	15,648,405	25,594,835	-	41,243,240	260,862
CGK	Jakarta	Soekarno–Hatta International Airport	Indonesia	15,166,899	38,745,431	584,295	54,496,625	390,648
DPS	Denpasar Bali	Ngurah Rai International Airport	Indonesia	13,791,400	9,926,030	434,769	24,152,199	155,206
HAN	Hanoi	Noi Bai International Airport	Vietnam	11,445,998	17,858,633	-	29,304,631	189,290
HKT	Phuket	Phuket International Airport	Thailand	10,661,782	7,425,708	6,214	18,093,704	115,915
DAD	Da Nang	Da Nang International Airport	Vietnam	7,146,527	8,397,071	-	15,543,598	98,706
CXR	Nha Trang	Cam Ranh International Airport	Vietnam	6,492,215	3,254,957	-	9,747,172	58,129
PNH	Phnom Penh	Phnom Penh International Airport	Cambodia	5,483,576	483,486	61,574	6,028,636	56,108
RGN	Yangon	Yangon International Airport	Myanmar	4,468,280	2,017,140	31,588	6,517,008	80,388
CEB	Lapu-Lapu	Mactan-Cebu International Airport	Philippines	4,291,589	8,370,466	-	12,662,055	129,844
SUB	Surabaya	Juanda International Airport	Indonesia	2,407,428	13,399,530	819,228	16,626,186	129,863
UPG	Ujung Pandang	Sultan Hasanuddin International Airport	Indonesia	307,488	8,294,394	2,154,916	10,756,798	97,890

Reference

Airports Council International: Annual World Airport Traffic Report 2020 Edition, 2020.

Map of Major Airports in ASEAN

Code	City	Airport Name
SIN	Singapore	Singapore Changi Airport
BKK	Bangkok	Suvarnabhumi Airport
KUL	Kuala Lampur	Kuala Lumpur International Airport
MNL	Manila	Ninoy Aquino International Airport
DMK	Bangkok	Don Mueang International Airport
SGN	Ho Chi Minh City	Tan Son Nhat International Airport
CGK	Jakarta	Soekarno–Hatta International Airport
DPS	Denpasar Bali	Ngurah Rai International Airport
HAN	Hanoi	Noi Bai International Airport
НКТ	Phuket	Phuket International Airport
DAD	Da Nang	Da Nang International Airport
CXR	Nha Trang	Cam Ranh International Airport
PNH	Phnom Penh	Phnom Penh International Airport
RGN	Yangon	Yangon International Airport
CEB	Lapu-Lapu	Mactan-Cebu International Airport
SUB	Surabaya	Juanda International Airport
UPG	Ujung Pandang	Sultan Hasanuddin International Airport


Centrality Analysis on Network Science

Network science: The world is home to various networks, ranging from spaces of our daily life to natural phenomena (e.g., the Internet, acquaintanceship, neural circuits, food chains, aviation networks, and power grids). Network science is an academic field that studies the patterns through which such diverse phenomena interconnect with one another.

Reference

Caldarelli, G. and Catanzaro, M.: Networks: A Very Short Introduction, Oxford University Press, Oxford, 2012

Centrality analysis conducted on ASEAN's 2019 aviation network using the OAG Historical Flight Statistics Database

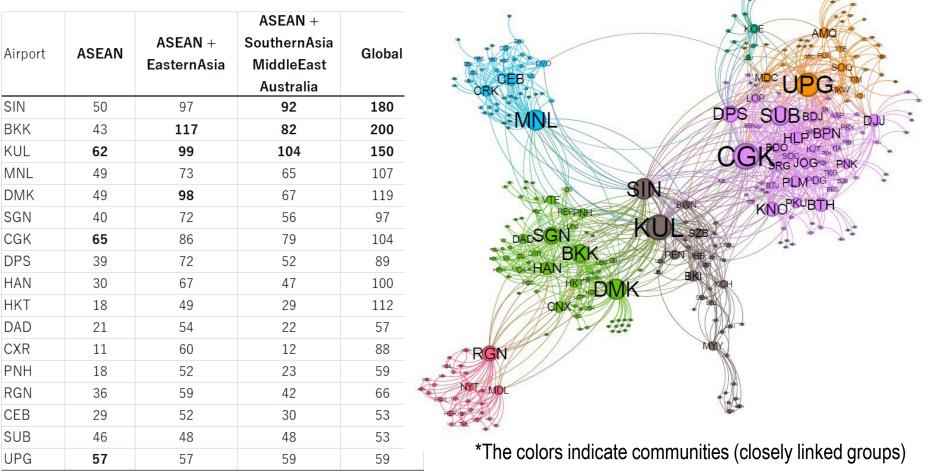
Reference

Newman, M.: *Networks: An Introduction.* Oxford University Press, Oxford, 2010, pp.101 Degree centrality

-Number of links that each node has

Betweenness centrality

-Percentage of a node of focus existing in the


shortest path between other two nodes Note: The physical distance of each link is disregarded

Centrality Analysis Results

Degree centrality

No distinction between domestic and international flights. Frequency is disregarded.

Joint research with Assistant Professor Kashin Sugishita of the Tokyo Institute of Technology Intra-ASEAN degree centrality

Centrality Analysis Results

Betweenness centrality

Airport	ASEAN	ASEAN + EasternAsia	ASEAN + SouthernAsia MiddleEast Australia	Global
SIN	0.1632	0.0553	0.1210	0.0109
BKK	0.0706	0.0338	0.0568	0.0050
KUL	0.1620	0.0636	0.0960	0.0043
MNL	0.1766	0.0638	0.0749	0.0074
DMK	0.1321	0.0524	0.0473	0.0040
SGN	0.0676	0.0262	0.0254	0.0025
CGK	0.1746	0.1040	0.0845	0.0072
DPS	0.0848	0.0647	0.0562	0.0038
HAN	0.0397	0.0170	0.0174	0.0021
НКТ	0.0050	0.0029	0.0044	0.0012
DAD	0.0060	0.0051	0.0017	0.0003
CXR	0.0009	0.0021	0.0002	0.0003
PNH	0.0108	0.0023	0.0019	0.0001
RGN	0.1063	0.0460	0.0400	0.0045
CEB	0.0401	0.0239	0.0115	0.0010
SUB	0.0496	0.0202	0.0165	0.0034
UPG	0.1011	0.0357	0.0354	0.0033

- Betweenness centrality can be interpreted as the (potential) advantage of a hub airport in an airline network (regardless of operations)
- Bangkok (BKK, DMK) Relatively low value as a result of having two airports in one city (possibility of there being not too many overlapping routes)
- Soekarno-Hatta (CGK) and Manila (MNL) have advantages as transit airports for international and domestic networks
- Changi (SIN) is relatively weak in terms of East Asian network